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1. INTRODUCTION

1 Introduction

Here’s a link to the full post; it was published on September 5, 2020.

Post Synopsis: I introduced the example of me and Becca, and how we

predictably polarized in our political leanings. I argued, using this case,

that the standard irrationalist explanation of polarization doesn’t work, and

sketched how a rational explanation would go, previewing the argument to

come.

Appendix Summary: I don’t want to bog down this high-level post with

too many details, as those are on their way in the coming weeks. Instead,

I’ll just provide some relevant links and citations.

Here are some links to other versions of the core argument this post sets out:

· ‘Why Rational People Polarize’ in Phenomenal World . This was an early version

of the idea that ambiguous evidence can lead to rational polarization.

· ‘A Plea for Political Empathy’. This was the opening piece to my Stranger Apo-

logies blog (of which this RP-series is a part), on why irrationalist explanations of

polarization lead to demonization.

· ‘Why the the other side is more rational than you think’. This piece should come

out any day now in Arc Digital ; it develops in more detail the argument that (1) we

can’t sensibly blame polarization on irrationality, and (2) that we can understand

it as rationally-caused.

Here are some citations to articles that endorse the “standard (irrationalist)

story” I criticized in the post:

· Klein (2014), ‘How politics makes us stupid’.

· Klein (2020), Why We’re Polarized.

Two comments. (1) This is a great book, and I highly recommend it. As we’ll

see, I buy a good amount of what Klein says when it comes to the empirical

story—where I’m skeptical is the way he thinks irrational ‘identity-protective

cognition’ explains polarization.

(2) Klein says he’s giving us a rational story: “The American political sys-

tem... is full of rational actors making rational decisions given the incentives

they face. We are a collection of functional parts whose efforts combine into

a dysfunctional whole” (xvii). Though I like the sound of that, it turns out

that what he means is that individuals are pragmatically rational—for

example, if you really care about your Republican identity, it makes sense

to ignore facts that are inconvenient for that identity, because maintaining

your identity is more important than getting to the truth. As will become
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1. INTRODUCTION

clearer in Post 4, what I’m interested—and what matters for how we think

about the other side—in is whether polarization can be epistemically ra-

tional, i.e. whether people who care about the truth can nevertheless wind

up predictably polarized.

· Achen and Bartels (2017), Democracy for Realists.

· Taber and Lodge (2006), ‘Motivated Skepticism in the Evaluation of Political

Beliefs’.

· Kahan et al. (2017), ‘Motivated Numeracy and Enlightened Self-Government’.

· Nguyen (2018), ‘Escape the echo chamber’.

This is a great piece: it makes some good distinctions between echo chambers

and filter bubbles, and it gives a nuanced picture of the (ir)rationality of

falling into an echo chamber (or cult). Still, I think it’s fair to consider it an

irrationalist narrative.

· Lazer et al. (2018), ‘The Science of Fake News’.

· Pennycook and Rand (2019), ‘Why Do People Fall for Fake News?’

· Van Heuvelen (2007), ‘The Internet is making us stupid’.

· Robson (2018), ‘The myth of the online echo chamber’.

· Koerth (2019), ‘Why Partisans Look At The Same Evidence On Ukraine And See

Wildly Different Things’.

· Carmichael (2017), ‘Political Polarization Is A Psychology Problem’.

Here are citations to some other work that’s critical of irrationalist explanations

of political disagreement:

· Jern et al. (2014), ‘Belief polarization is not always irrational’.

· Benôıt and Dubra (2019), ‘Apparent Bias: What does attitude polarization show?’

· Singer et al. (2019), ‘Rational social and political polarization’.

· Whittlestone (2017), The importance of making assumptions: why confirmation is

not necessarily a bias.

See this blog post for an accessible summary of her thesis.

· O’Connor and Weatherall (2018), ‘Scientific Polarization’.

· Engber (2018), ‘LOL Something Matters’.

· Lepoutre (2020), ‘Democratic Group Cognition’.

· Landemore (2017), Democratic reason: Politics, collective intelligence, and the

rule of the many.
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2 How to Polarize Rational People

Here’s a link to the full post, published on September 12, 2020.

Post Synopsis: I described an experiment designed to show how it’s pos-

sible to polarize people using ambiguous evidence. To do this, I introduced

word-completion tasks in which you’re asked to determine whether a given

letter-string is completable by an English word. The key point about this

task is that it provides asymmetrically ambiguous evidence: it’s easier to

know what to think if there is a completion than if there’s not a comple-

tion. As a result, we can split people into groups—the Headsers and the

Tailsers—such that Headsers are better at recognizing cases where a coin

lands heads, Tailsers are better at recognizing cases where it lands tails, and

as a result they predictably polarize.

Appendix Summary: Here I’ll report in more detail the results of the

study I ran confirming this prediction. A pre-registration form for the study

is available here.

250 participants were recruited through Prolific (107 F/139 M/4 Other; mean age =

27.06). Subjects were randomly divided into an Ambiguous (A) and Unambiguous (U)

condition. Within each condition, they were further (randomly) divided into “Headsers”

and “Tailsers”. I will abbreviate the groups “A-Hsers”; “A-Tsers”; “U-Hsers”, and

“U-Tsers”. Each group was told they’d be given evidence about a series of independent,

fair coin tosses.

The A group was informed about how word-completion tasks work, and given three

examples (‘P A ET’ [planet], ‘CO R D’, [uncompletable] and ‘ E RT’ [heart]). The

A-Hsers were instructed that they’d see a completable string if the coin landed heads,

and an uncompletable if it landed tails. The A-Tsers were instructed vice versa. Each

participant was presented with four independent word-completion tasks. In each, they

were first told that a coin was flipped to determine (as per the rule above) whether the

letter-string they next saw would be completable, and asked how confident they were

that it was completable. They used a 0 − 100% slider to rate this confidence, which

they were given standard instructions about how to use. This first (“prior” confidence)

question for each toss was an attention check, and participants were instructed to answer

“50%” at this stage, since they had not received any evidence. It was pre-registered that

I would exclude data from participants who failed two or more of these attention checks.

(All in all, data from 25 subjects out of 250 were excluded for these reasons.)

After each check, the participant was presented with some evidence about the coin

toss. Of the four tosses each participant saw, two landed heads and two landed tail, so

each saw two completable strings and two uncompletable strings, in random orders. The
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2. HOW TO POLARIZE RATIONAL PEOPLE

completable strings were randomly drawn from the list, {FO E T, ST N, FR L}
(forest/foment; stain/stern; frail/frill); the uncompletable strings were drawn from the

list, {TR P R, ST RE, P G ER}.1 After seeing their string for 7 seconds, the

participants were asked how confident they were that it was completable, and presented

with a slider between 0–100%.2

The U group, in contrast, was told that each toss of the coin would be used to

determine the contents of the urn. For U-Hsers, if the coin landed heads then the urn

contained 1 black marble and 1 non-black marble; if it landed tails, it contained two

non-black marbles. (For U-Tsers, ‘heads’ and ‘tails’ were reversed.) The colors of the

non-black marbles changed across trials to make clear they were different urns. Again,

each toss started by telling them a new coin had been tossed, and asking how confident

they were that it landed heads (U-Tsers: how confident they were that it landed tails).

This was an attention check as those above; they were instructed to answer “50%”, and

data from subjects who failed two or more was omitted. Subjects were then told what

color marble came from a single random draw of the urn, and asked how confident they

were that the coin landed heads (U-Tsers: tails). Each subject saw four separate coin-

toss/urn pairs; three of the four revealed a non-black marble, while the fourth revealed a

black one—simulating the expected rate of black marbles if the coin landed heads/tails

50% of the time, and the marbles were drawn at their expected rate.

The U group was so designed in order to test the hypothesis that it is ambiguity

of evidence that drives the polarization effect. As can be seen, there is a structural

similarity but also a structural dissimilarity between the A-group and the U-group. The

similarity is that both groups have some chance of getting decisive evidence in favor

of a hypothesis (finding a completion for the A group; seeing a black marble for the

U-group), and some chance of getting weak evidence against that hypothesis (failing to

find a completion for the A group; seeing a non-black marble for the U-group).

The dissimilarity is that subjects in the U-group are, in principle, able to know

what they should do with this evidence—a straightforward Bayesian calculation says

that if you’re a U-Hser and see a black marble, you should assign probability 1 to the

coin landing heads, and if you see a non-black marble, you should assign probability
1
3 to it having landed heads.3 In contrast, with the word completion task when you

1 No doubt it would be useful to run a study using a bigger sample of letter-strings; obviously, they
must be chosen with some care, as completely random strings like ‘X TNO ’ will standardly be too
obvious.

2 Pilot studies indicated that when people were asked how confident they were that the coin landed
heads or tails, subjects were substantially confused, often—it seems, reversing the scale or not moving
it from 50%. This makes sense, as there is a pragmatic oddness and an extra cognitive load in asking
about whether the coin landed heads (tails), when that is known to be equivalent to whether the string
was completable. For this reason, I elicited their opinion about whether the string was completable,
and used that reported number to infer their confidence in heads/tails on the given flip, based on which
group they were in.

3 P (H|non-black) =
P (non-black|H)·P (H)

P (non-black|H)·P (H)+P (non-black|¬H)·P (¬H)
= 0.5·0.5

0.5·0.5+0.5·1 = 1
3

.
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2. HOW TO POLARIZE RATIONAL PEOPLE

do find a word, you should of course be certain that it’s completable; but when you

don’t find a word, it is much harder to know what opinion you should have. This is a

theoretical prediction we’ll go more into after we get a theory of ambiguous evidence on

the table—but the basic idea is that you should be unsure whether you should think of a

completion, and therefore unsure what evidence you actually received—unsure whether

you should be sure the string is completable. (Staring at ‘ EAR T’, you think, “I don’t

see one; but should I?” When ‘learnt’ pops into you’re head, you may well think, “Ah,

I should’ve seen that!”) Because of this uncertainty, subjects will (rationally) be unsure

how much to lower their confidence that the string is completable.

From the responses of each group to each question, I calculated their prior and

posterior confidence that the coin landed heads in each toss (for Hsers, this was the

number they reported as their confidence; for Tsers, it was obtained by subtracting

this number from 100). It was predicted (predictions 1–3) that the ambiguous evidence

would lead to polarization, and (predictions 4–6) that it would lead to more polarization

than the unambiguous evidence:

1. The mean A-Hser posterior in heads would be higher than the prior (of 50%).

2. The mean A-Tser posterior in heads would be lower than the prior (of 50%).

3. The mean A-Hser posterior would be higher than the mean A-Tser posterior in

heads.

4. The mean A-Hser posterior would be higher than the mean U-Hser posterior.

5. The mean A-Tser posterior would be lower than the mean U-Tser posterior.

6. The mean difference between A-Hser posteriors and A-Tser posteriors would be

larger than that between the U-Hser posteriors and U-Tser posteriors.

Predictions 1, 2, 3, 5, and 6 were confirmed with statistically significant results; Predic-

tion 4 had the divergence in the correct direction but it was not statistically significant.

Plots of prior and posterior mean confidences in each group (by-item), along with 95%

confidence intervals, displayed in Figure 1:

A-Hsers

A-Tsers

0 20 40 60 80 100

Prior

Posterior

Confidence in Heads

U-Hsers

U-Tsers

0 20 40 60 80 100

Prior

Posterior

Confidence in Heads

Figure 1: Mean prior and posterior confidence in heads in ambiguous- (left) and
unambiguous-evidence (right) conditions. Bars represent 95% confidence intervals.
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2. HOW TO POLARIZE RATIONAL PEOPLE

In more detail: one-sided paired t-test for Prediction 1 indicated that A-Hser priors

(M = 50.35, SD = 3.26) were lower than A-Hser posteriors (M = 57.71, SD = 30.33)

with t(219) = 3.58, p < 0.001, d = 0.341. One-sided paired t-test for Prediction 2

indicated that A-Tser posteriors (M = 36.29, SD = 31.04) were lower than A-Tser

priors (M = 49.60, SD = 2.90), with t(191) = 5.90, p < 0.001, d = 0.604. And one-

sided independent samples t-test for Prediction 3 indicated that A-Hser posteriors (M

= 57.71, SD = 30.33) were higher than A-Tser posteriors (M = 36.29, SD = 31.04), with

t(410) = 7.07, p < 0.001, d = 0.699. Meanwhile, one-sided independent samples t-test

for Prediction 4 failed to indicate that A-Hser posteriors (M = 57.71, SD = 30.33) were

higher than U-Hser posteriors (M = 54.64, SD = 26.93), with t(441) = 1.15, p = 0.125,

d = 0.107. But one-sided independent samples t-test for Prediction 5 indicated that

U-Tser posteriors (M =48.10, SD = 28.47) were above A-Tser posteriors (M = 36.29,

SD = 31.04), with t(393) = 4.07, p < 0.001, d = 0.398.

Prediction 6 was (due to my oversight) handled poorly at the pre-registration stage—

I only planned to calculate 95% confidence intervals for the differences between A-Hser

and A-Tser posteriors as well as U-Hser and U-Tser posteriors, and compare them. This

comparison went as expected: the 95% confidence interval for the difference between

A-Hsers and A-Tsers was [15.2, 27.2], while that for the difference between U-Hsers and

U-Tsers was [1.8, 11.8]. The former dominates the latter, indicating a larger difference.

What should’ve been planned, I later realized, was to do (a) a 2 × 2 ANOVA, and

(b) an empirically bootstrapped 95% confidence interval for the difference between the

differences between A-Hsers/A-Tsers and U-Hsers/U-Tsers.

(a) Let valence be the variable for whether the subject was a Headser (= 1) or Tailser

(= 0), and ambiguity be the variable for whether the subject was in the ambiguous

(= 1) or unambiguous (= 0) group. Analyzing the results using a 2 (valence: Headser

vs. Tailser) by 2 (ambiguity: ambiguous vs. unambiguous) ANOVA indicated that there

was a main effect of valence (F (1, 899) = 46.47, p < 0.001), a main effect of ambi-

guity (F (1, 899) = 4.31, p = 0.038), and (as should’ve been predicted) an interaction

effect between valence and ambiguity (F (1, 899) = 14.57, p < 0.001), indicating that

the divergence between Headsers and Tailsers was exacerbated by having ambiguous

evidence.

(b) Meanwhile, the empirically bootstrapped 95% confidence interval for the differ-

ence between differences between A-Hsers/A-Tsers and U-Hsers/U-Tsers was [7.2, 22.6],

indicating that the Hsers and Tsers in the ambiguous condition diverged in opinion

more than in the unambiguous condition. As mentioned, this condition had a Cohen’s

d effect size of 0.699. Notably, there was a significant difference between U-Hser pos-

teriors (M = 54.64, SD = 26.93) and U-Tser posteriors (M = 48.10, SD = 28.47), with

t(486) = 2.61 and (two-sided) p = 0.009, but the effect size was smaller (d = 0.236).

A further oversight on my part at the pre-registration phase was that I only realized
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2. HOW TO POLARIZE RATIONAL PEOPLE

after the fact that I actually had access to time-series data about how the participant’s

confidence evolves over time. In particular, using their priors and posteriors for each of

the four coin tosses, I could calculate their average confidence in heads after seeing n

bits of evidence, for n ranging from 0 to 4.4 If they are Bayesian in their confidence,

this average confidence equals their estimate for the proportion of times the coin landed

heads.5 In fact, using these numbers (and assuming they treated each coin flip inde-

pendently, as instructed) we could calculate how their opinions would’ve evolved in any

proposition about the coin-flips if they were Bayesian.

Thus I was able to track how their estimate of the proportion of heads (as well as

other measures of their beliefs about heads) evolved over time. In other words, we can

re-run the above data by pooling responses within subjects and calculating them at each

stage in their progression through the experiment. All the predicted results above hold

true with this way of carving up the data (with universally lower p-values, since the

variance of the data has dropped since we’ve pooled data within subjects; Prediction 5

is still the only non-significant effect).

Using this, we can calculate the trajectories of their the mean estimate of the pro-

portion of heads (i.e. calculate the mean of the subjects’ average confidence in heads

at each stage in the experiment), as reported in the blog post; see Figure 2 for this

evolution in both the A and U groups.

A-Hsers

A-Tsers
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Figure 2: Mean confidence in heads trajectories as subjects view more tasks. Left is
ambiguous condition, right is unambiguous condition. Bars represent 95% confidence
intervals.

As can be seen, the ambiguous group continues to diverge, while the unambiguous

group does not. Using this pooled-within-subject data, a one-sided independent samples

t-test indicated that there is an even larger difference between A-Hser posteriors (M =

57.71, SD = 12.26) and A-Tser posteriors (M = 36.29, SD = 14.95), with t(101) = 7.98,

4 I.e. at stage 0 average their priors for all tosses; at stage 1, average their posterior for the first toss
they saw with their priors from the 3 remaining; at stage 2, average their posteriors for the first two
tosses they saw with their priors from the remaining 2, etc.

5 Where P if their probabilistic credence function and IHi
is the indicator variable for Hi (1 if heads,

0 if tails),
∑4

i=0
P (Hi)

4
=

∑4
i=0

E(IHi
)

4
= E[

∑4
i=1

IHi
4

] = E[proportion of heads].
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p < 0.001, and d = 1.577. The 95% confidence interval for the difference is now [16.02,

26.82]. (Meanwhile, a two-sided t-test for the difference between U-Hser posteriors

(M = 54.64, SD = 10.19) and U-Tser posteriors (M = 48.10, SD = 10.53) was again

significant, but again with a smaller effect size: t(120) = 3.49, p = 0.0034, d = 0.631.

The 95% confidence interval for the difference between U-Hsers and U-Tsers was [2.82,

10.26]—again dominated by the A-group’s difference confidence interval; likewise, a 2x2

ANOVA again indicated significant main and interaction effects; etc.)

This time-series data allows us to see the divergence in other ways. For instance,

consider claims of the form,“there were at least x heads”, for x ranging from 1 to 4,

and we see the diverging trajectories in the ambiguous condition on the left of Figure

3 (page 10), along with the smaller divergences of the unambiguous condition on the

right.

The crucial question: what drives the polarization? The full theory of this will

have to wait till we get the theory of ambiguous evidence on the table. But we can start

by getting a few things on the table.

First, the effect is not being driven by an asymmetry between strong and

weak evidence. The U group was set up to mirror this asymmetry, but they did not

display nearly as strong a polarization effect. Moreover, there is reason to expect that

the effect they did experience was a “response bias” effect.6

Rather, what drives the effect has to do with the ambiguity of the evidence—the

fact that it’s hard to know what to think when you don’t find a completion than when

you do find one. There is evidence for this in the data. For example, we can divide

the A-group cases in which they found a word (operationalized as: they had credence

100 that there was a completion; more on this in a few weeks) and didn’t, and then

calculate the expected variance in opinion (by weighting the two by what proportion

of trials found word) if there is a word compared to when there isn’t. Likewise, we

can divide the U-group into cases in which they saw a black marble vs. didn’t, and

then calculate the expected variance in opinion if there is a black marble vs. if there

isn’t. The fact that there is an “ambiguity asymmetry” should mean that the expected

variance in opinion is asymmetric around the completable/not-completable distinction,

but that it is not asymmetric around the black-marble/no-black-marble distinction.

This is what we find. For the A-group: the expected variance in opinion when a

word-completion task is completable was 383.9, whereas when it wasn’t completable it

was 746.7. In contrast, for the U-group: the expected variance in a opinion when there

was a black marble was 239.0, whereas when there wasn’t was 266.1.

6U-Hsers were asked “How confident are you that the coin landed heads?”, whereas U-Tsers were
asked “How confident are you that the coin landed tails?”. (This mirrors the fact that A-Hsers and
A-Tsers were both asked how confident they were that there was a completion—for the former, that
question is equivalent to asking for their confidence in heads; for the latter, it’s equivalent to asking
for their confidence in tails.) It seems probable that this difference in questions drove what effect there
was.
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Ambiguous evidence: Unambiguous evidence:
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Figure 3: Mean confidence in “at least x heads” as view more tasks, for x ranging from
1–4. Left side is ambiguous condition; right side is unambiguous condition.
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2. HOW TO POLARIZE RATIONAL PEOPLE

I’ll argue, in future posts, that this asymmetry in ambiguity in the A-group case

is what drives the polarizing effect, for it makes Headsers better at recognizing heads-

cases, and Tailsers better at recognizing tails-cases. For now, we can simply report that

the data fits with this explanation. When we pool across subjects and divide trials into

heads-cases and tails-cases, here are the average posteriors in the groups:

Average confidence it landed heads across cases:

A-Hsers A-Tsers U-Hsers U-Tsers

Overall: 57.7 36.29 54.64 48.10

Heads cases: 67.42 47.73 66.89 59.95

Tails cases: 48.00 24.84 42.39 36.25

As can be seen, Headsers are better at recognizing heads-cases, Tailsers are bet-

ter at recognizing tails-cases—and these differences are especially stark amongst the A

group. After the fact, I decided to look at these differences statistically (so these tests

were not pre-registered). A one-sided t-test found that amongst heads cases, A-Hsers

(M = 67.42, SD = 30.38) had a mean significantly above A-Tsers (M = 47.74, SD =

27.54), with t(204) = 4.84, p < 0.001, d = 0.677. (A-Tsers mean confidence of 47.74 is

not significantly different from 50: two-sided t-test yielded t(95) = −0.80, p = 0.423.)

Meanwhile, amongst all tails-cases, A-Hsers (M = 48.00, SD = 27.10) were again signi-

ficantly higher than A-Tsers (M = 24.84, SD = 30.22), with t(204) = 5.80, p < 0.001,

d = 0.810. (A-Hsers mean confidence of 48.00 is not significantly different from 50:

two-sided t-test yielded t(109) = −0.77, p = 0.440.)

In contrast, these asymmetries were smaller for the unambiguous condition. The

difference between U-Hsers (M = 66.89, SD = 30.27) and U-Tsers (M = 59.95, SD =

17.16) in heads-cases was significant but small: two-sided t-test revealed t(195) = 2.21,

p = 0.028, d = 0.281. Meanwhile the difference in tails-cases between U-Hsers (M =

42.39, SD = 15.43) and U-Tsers (M = 36.25, SD = 32.42) was not significant: t(169) =

1.88, p = 0.062.
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3 How We Polarized

Here’s a link to the full post, published on September 19, 2020.

Post Synopsis: Polarization has always been with us. A set of basic psy-

chological and sociological mechanisms explain why human societies have al-

ways been characterized by both local conformity and global diversity : there

tends to be agreement within small social circles, but disagreement between

them. As a result, when people go off on different life trajectories, it’s al-

ways been normal for their attitudes to drift apart. What’s changed in recent

decades is that a series of factors have come together to align these various

mechanisms and kick them into overdrive. As a result, now when people

like me and Becca go off on different life trajectories, their opinions diverge

in predictable and consistent directions—and do so faster and farther than

before. In a slogan: normally, polarization is a random walk; recently, it’s

been transformed into a feedback loop.

Appendix Summary: There is a ton more that could be said. But to

avoid getting bogged down in too many details, I’ll just address the one part

of my empirical story that I expect to be somewhat controversial—namely,

whether American’s opinions have polarized in recent decades.

There is, of course, a large debate in political science (and elsewhere) about what the

proper characterization of recent polarization polarization is, and in what sense things

have changed. Two of the three core mechanisms I described in the post are uncon-

troversial: Americans have definitely become increasingly ideologically sorted (Fiorina

2016)7, and they have definitely had increasingly negative feelings toward those on the

other side (Iyengar et al. 2019).

The claim I made that might be controversial is that Americans have also experienced

attitude polarization, where that means they have become more extreme in their

political opinions. Some authors contest this. They (rightfully) resist overblown claims

that the “political center” has disappeared—pointing out that although opinions are now

increasingly sorted by party, the distribution of opinions on particular policies (things

like: “The maximum tax rate should be %”; “The state should supply healthcare”;

etc.) have not changed dramatically (Fiorina 2016). It is sometimes inferred that this

means that American’s political opinions have not polarized—they’ve just “sorted.”

7 In my post I appealed to the claim that parties have also sorted geographically, with an increasing
urban-rural divide (Bishop 2009). This is somewhat controversial (Abrams and Fiorina 2012), but I take
the evidence to show that some substantial increase in urban/rural sorting has occurred (Brownstein
2016). For instance, in 1916, there was no correlation between population per square mile and the
Democratic share of the two-party vote; in 2016, there was a robust and steep positive correlation
(Klein 2020, 40).
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This, I think, is a mistake—and it is one due to an overly narrow view of what counts

as a “political opinion.” Yes, it’s true that if you ask people “What do you think of policy

X?”, and you do not tell them whether a Democrat or a Republican is proposing the

policy, the distribution of opinions has not shifted dramatically over time. But if you

instead ask them “What do you think of the Democratic Party’s proposal of policy X?”,

then their opinions have shifted over time. For example, the split between Republican

and Democratic presidential approval ratings has become much more extreme over the

past half-century (Gao and Smith 2016).

The point is a conceptual one: although it is useful to see what people’s opinions

about policies in the abstract are, in any concrete disagreement over political policies,

it will be common knowledge which party is proposing them. Moreover, the following

two claims are different claims:

1) Policy X will be good for the country if implemented.

2) The Democrat’s proposal of policy X will be good for the country is implemented.

Since they are different claims, it can be perfectly sensible to have very different attitudes

toward them. (If you really trust Democrats, it makes sense to be more confident of

(2) than (1); if you really distrust them, it makes sense to be less confident of (2) than

(1).) Thus opinions about policies-proposed-by-party-Y are political opinions; they are

political opinions that matter; and they are ones that have gotten increasingly polarized

over the decades.

There is another way to make this point, this time focusing on affective polarization.

It is uncontroversial that (for instance) Democrats have increasingly negative feelings

toward Republicans. But it should also be uncontroversial that such feelings will be

highly correlated with various beliefs about members of these parties (Haidt 2012; Ryan

2014). For example, if for the past few decades we had asked Democrats how confident

they were in claims like “Republicans tend to be selfish” or “Republicans tend not to

listen to information with an open mind,” we know that these ratings would also be going

up over time. Since Republican’s don’t have increasingly negative views of themselves,

Republican’s opinions on these points will not be going up—at least not at the same

rate. That means we expect attitude polarization on certain political opinions—for

instance, those about the qualities (selfishness, open-mindedness, etc.) that partisans

possess. Those are political opinions par excellence: if you were to drop me off in a

foreign country I knew nothing about, and I had to figure out which political party to

support, the first thing I would want to know is what the members of that political

party are like!

Upshot: I think it should be uncontroversial that whenever we have predictable

ideological sorting and predictable affective polarization, we thereby will get certain

forms of predictable attitude polarization as well, wherein people’s political opinions

become increasingly divergent.
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4 What is Rational Polarization?

Here’s the link to the full post, published on September 26, 2020.

Post Synopsis: I explained how my project focuses on whether polarization

can be epistemically rational—meaning that it is to be expected from people

who are doing the best they can to get to the truth—and offered a theory

of epistemic rationality within which to situate my argument. In particular,

I (1) introduced unambiguous Bayesianism as the standard theory of

epistemic rationality and explained why it forbids predictable polarization

(Fact 4.4), (2) showed that any theory that allows ambiguous evidence will

permit predictable polarization (Fact 4.7), (3) introduced my favored theory

(Rationality as Value), which says that epistemically rational transitions

are those that satisfy the value of evidence, and showed that it generalizes

unambiguous Bayesianism (Fact 4.10) and also permits ambiguous (and,

therefore, predictably polarizing) evidence (Theorem 4.13).

Appendix Summary: In this appendix entry, I’ll formalize and prove the

facts stated in the blog post. §4.1 focuses on modeling ambiguous evidence

and predictable polarization, and proving a tight connection between the

two. §4.2 focuses on formalizing the Rationality as Value constraint, and

showing how this implies unambiguous Bayesianism when evidence is as-

sumed to be unambiguous, but allows predictable polarization once we give

up that assumption.

4.1 Ambiguous evidence and predictable polarization

The class of models we’ll be working with are all Bayesian, in the sense that they

all represent rational beliefs with probability functions. The models I will employ are

probabilistic generalizations of the possible-worlds models used in modal and epistemic

logic (Hintikka 1962; Kripke 1963). The key idea is that the rational probabilities vary

across worlds, and when evidence is ambiguous, the rational probability function can be

unsure what the rational probability function is. For an introduction to these models

see (Dorst 2019, 2020b) and the citations therein.

The models are sometimes called (dynamic) probabilities frames 〈W,P1,P2〉.8

They are used for modeling the epistemic state of a given person (say, you) at two

times, 1 and 2. W is a finite set of possibilities (“worlds”), thought of as a parti-

tion of logical space that is fine-grained enough for the modeling purposes at hand.

Claims/propositions/events are represented as ways the world could be, i.e. subsets of

8 “Frames” following standard modal-logic terminology, since these structures do not contain an
interpretation function for a formal language. This is because, as we’ll see, the formal language would
get cumbersome and is not necessary.

14

https://www.kevindorst.com/stranger_apologies/what-is-rational-polarization


4. WHAT IS RATIONAL POLARIZATION?

W . I’ll use p, q, r... as variables for these propositions. Logical operations are handled

via set theory: p∧ q = p∩ q, ¬p = W \ p, p→ q = (W \ p)∪ q, etc. p is true at world w

iff w ∈ p; or, more generally, p is true at q ⊆W (i.e. q entails p) iff q ⊆ p.
Each Pi : W → ∆(W ) is a function from worlds w ∈ W to probability function

Piw defined over the subsets of W . The interpretation is that Piw captures the rational

opinions for you to have at time i, given the evidence you have then. This is to be

understood as a definite description: you can be unsure what the rational degrees of

confidence are, given your evidence, which is just to say you can be unsure whether

you’re in a world a world where they are one thing, or a different world in which they’re

different.

Importantly, Pi is not intended to represent the opinions you actually have; it is

intended to represent the opinions you should have, given your evidence. Thus even if

you are in fact rational and know what opinions you in fact have, you can be unsure

what Pi is because you can be unsure whether you are rational (see Dorst 2019).

Given a frame 〈W,P1,P2〉, we use Pi to define propositions about what opinions

are rational for you, thus allowing us to represent higher-order opinions (opinions about

what opinions are rational) as well as first-order opinions (opinions about the world)

seamlessly. For instance, [P i(q) ≥ t] := {w : Piw(q) ≥ t} is the set of worlds where the

rational credence function for you at time i assigns credence at least t to the proposition

q. Thus, for instance, [P 1(P 2(q) ≥ 0.5) = 0.3] is true at a world w iff P1
w(P 2(q) ≥ 0.5) =

0.3, iff P1
w({x : P2

x(q) ≥ 0.5) = 0.3. Since the inner probability claim is always a set

of worlds, we can always “unpack” it so that probabilities of probabilities are always

probabilities of propositions, and thus are always well-defined.

For simplicity of definitions and results, I will also assume that our probabilities are

always reflexive, meaning that for all w, i: Piw(w) > 0. This is equivalent to the claim

that your evidence never warrants being certain ins a falsehood: [P i(q) = 1]→ q is true

at every world in for every i, q in every frame.9

Given these models, we can formally define what it is for your evidence to be am-

biguous:

Definition 4.1. Pi is ambiguous at world w iff there is a proposition q such that

Piw(P i(q) = t) < 1 for all t. Pi is potentially ambiguous iff it is ambiguous at some

world.

Informally, evidence i is ambiguous iff, given that evidence you should be unsure

what opinions it warrants having—iff it warrants higher-order uncertainty. In any such

case, there will, of course, be some t such that Piw(q) = t. Thus at world w, it’s true

that P i(q) = t, but also true that P i(P i(q) = t) < 1: you should be t-confident of q, but

you should be less than certain that you should.

9Everything I say and prove could be generalized beyond this case, but many of the results and
definitions get more tedious to state.
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Colloquially: your evidence is ambiguous when, given that evidence, you should be

unsure what you should think. Even more colloquially: evidence is ambiguous when it

doesn’t wear its verdicts on its sleeve, i.e. it’s hard (even for rational people) to know

what to do with it.

Next, we need to define what I mean to say that evidence is predictably polarizing.

Since our frames encode higher-order opinions, we can ask what how confident you

expect the future rational opinions to be in some claim, and compare that to how

confident you should be now.

For any random variable (function from worlds to numbers) X, let

Eiw[X] :=
∑
t∈R Piw(X = t) · t be Piw’s expectation of X, i.e. a weighted average of the

various possible values of X, with weights determined by how likely they are to obtain.

(We can use this function to define propositions about rational expectations as above,

e.g. [E2[X] = t] := {w : E2
w[X] = t}.) Note that for any proposition q, P i(q) is such a

random variable—give it a world w, and it’ll output how likely q is according to evidence

i at that world, i.e. Piw(q). Thus we can compare how confident you should be at (at

world i) at time 1—namely, P1
w(q)—with how confident you should (at time 1) expect

that you should be at time 2—namely, E1
w[P 2(q)]. The evidence you’ll receive at time 2

is predictably polarizing if you expect it to push the rational confidence in a particular

direction:

Definition 4.2. P2 is predictably polarizing relative to P1 iff, at some world w,

for some q, P1
w(q) 6= E1

w[P 2(q)] (so either P1
w(q) > E1

w[P 2(q)], or P1
w(q) < E1

w[P 2(q)]).

Why this definition of predictable polarization? This is a good question, on which

much could be said, but here I’ll just make a few remarks.10

Let Pi be the rational opinions for me at time i; letQi be the rational opinions for you

at time i (modeled in the same way), let Fiw be your corresponding expectation function

at world w and time i, and let Qi be a definite description for your credence function at

time i. Suppose we know that we agree at time 1, i.e. that P1 = Q1. Then the divergence

between our opinion in q at time 1 is zero: for all q, P 1(q)−Q1(q) = 0. Now suppose that

neither of us will get predictably polarizing evidence. Then whatever we might learn, our

prior best estimate will still be that the divergence between our opinion on every q will

be zero: at every w, E1
w[P 2(q)] = P 1

w(q) = Q1
w(q) = E1

w[Q2(q)], and therefore by linearity

of expectations E1
w[P 2(q)−Q2(q)] = 0 (and likewise for F1

w). In short: if we agree and we

don’t get predictably polarizing evidence, we can’t predict that our opinions will diverge

in a particular direction. In contrast, if we do get predictably polarizing evidence, then

we can—for instance, if E1
w[P 2(q)] > P 1

w(q) = Q1
w(q) > F1

w[Q2(q)], then if we share

opinions at time 1, it follows that E1
w[P 2(q)−Q2(q)] > 0 = P 1

w(q)−Q1(q). Thus we can

both agree on some political claim q at time 1, but we can both expect that by time 2,

I’ll be more confident of q than you will be.

10Salow (2018) makes a convincing case for it, albeit in a slightly different context.
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Moreover, even if we have different initial opinions, if I won’t receive predictably

polarizing evidence, then insofar as I expect our disagreements to grow larger, this must

be because I expect your opinion to move away from mine, and expect my opinion to stay

fixed: E1
w[(P 2(q)−Q2(q))− (P 1(q)−Q1(q))] = E1

w[P 2(q)− P 1(q)] + E1
w[Q1(q)−Q2(q)] =

0 + E1
w[Q1(q)−Q2(q)]. This is unlike the polarization we see in real life, in which I

can expect that my own opinion will get more extreme in one direction, and that your

opinion will get more extreme in another.

A different question you may have is why care about the expectational sense of

“predictable polarization”, rather than (say) a version which says that divergence in a

particular direction is “predictable” if it’s highly likely you’ll diverge in that direction.

In general, I say let a thousand flowers bloom, so this may be a useful definition of

“predictable polarization” for some purposes. But notice that there is a close connection

between the two, through the law of large numbers.

Suppose neither of us will get predictably polarizing evidence in my sense. Moreover,

suppose that there is class of people (“Democrats”) who are going to get the same type

of evidence as I will, and there is a different class of people (“Republicans”) who will

get the same type of evidence as you will. Let P 2,1, P 2,2, ..., P 2,n be the future credence

functions of the former group, and Q2,1, Q2,2, ..., Q2,m be the future credence functions

of the latter. Suppose further that we all have the same opinions at time 1. Then

it’ll often be appropriate to treat the P 2,i as i.i.d. with respect to my initial credences

P1
w, and likewise for Q2,i. By the law of large numbers, it follows that, as n gets

large, I should (at time 1, i.e. according to P1
w) become arbitrarily confident that the

average of the P 2,i(q) will be very close to E1
w[P 2,i(q)], which by the lack of predictable

polarization equals P 1
w(q). Likewise, as m gets large, for the average of the Q2,i. In

other words, without predictable polarization in the sense defined above, I must be quite

confident that the population of people-like-me will, on average, be as confident of q are

they are initially—and that this average will not diverge from the average confidence of

people-like-you.

Much more could be said, but for now I’ll leave it there.

The next step is to prove a close connection between potentially ambiguous evidence

and predictably polarizing evidence in the sense defined.

First, let’s formulate unambiguous Bayesianism—what I called the “standard

theory” of epistemic rationality—and show that it rules out predictably polarizing evid-

ence. The standard theory is that we can represent someone’s beliefs with a probability

function π that is fixed and known, and when someone learns something that evidence

comes in the form of a partition Π which the agent will condition on (e.g. Weisberg

2017).11 Note two facts. First, if π is fixed, that means it doesn’t vary across worlds,

11Notation: I’ll use ‘P 1’ etc. as definite descriptions for probability functions (i.e. as probability
functions which vary across worlds), and use lowercase greek letters (π, δ,...) for rigid designators for
probability functions, i.e. for probability functions which don’t vary across worlds.
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so {w : π(q) = t} will either be W (if π(q) = t) or ∅ (if π(q) 6= t). Thus there is no

uncertainty about what the rational credence function, π is. Second, if for every world

w ∈ Π(w), the posterior rational credence is gotten by updating π on Π(w), then all

the worlds in Π(w) will agree on the rational posteriors, and thus every world in this

set will be certain of what the rational posteriors are.

Because of this, the following definition is faithful to the standard Bayesian line

(compare van Benthem 2011; van Ditmarsch et al. 2015, Ch. 4):

Definition 4.3. A frame 〈W,P1,P2〉 is unambiguous Bayesian iff P1 is unambigu-

ous, and there is some partition Π of W such that for all w: P2
w(·) = P1

w(·|Π(w)).

Here’s the first result:

Fact 4.4 (“Fact 1”, in the blog post). If 〈W,P1,P2〉 is unambiguous Bayesian, then

P2 is not predictably polarizing (Weisberg 2007; Briggs 2009; Salow 2018).

Proof Sketch. Take an arbitrary world w. Since P1 is unambiguous (and reflexive), it

follows that P1
w(P 1 = P1

w) = 1, so all worlds assigned positive probability by P1
w agree

on the rational credence function at time 1. Let E1
w := {x : P1

w(x) > 0}. Since

the frame is unambiguous Bayesian, there is a partition Π such that for all x ∈ E1
w,

P2
x(·) = P1

w(·|Π(x)), and hence that if x ∈ Πi ∈ Π, then P2
x(q) = P1

w(q|Πi), and therefore

E1
w[P 2(q)|Πi) = P 1

w(q|Πi). Since Π partitions E1
w, that means, for any q ⊆W :

E1
w[P 2(q)] =

∑
Πi∈Π

P1
w(Πi) · E1

w[P 2(q)|Πi] (total expectation)

=
∑

Πi∈Π

P1
w(Πi) · P1

w(q|Πi)

= P1
w(q). (total probability)

An immediate consequence are the points mentioned above: if both you and I will

have opinions that evolve in an unambiguous Bayesian way, then (1) if we share opinions

initially then we can’t expect to diverge in a given direction, and (2) insofar as I expect

us to diverge, it’s completely because I expect your confidence to shift. Precisely: let

〈W,P1,P2,Q1,Q2〉 be a two-person frame. Then:

Corollary 4.5. If both Pi and Qi are unambiguous Bayesian, then:

(1) If P1
w = Q1

w at all w, then E1
w[P 2(q)−Q2(q)] = 0 at all w; and

(2) Regardless of whatQ1 is, E1
w[(P 2(q)−Q2(q))− (P 1(q)−Q1(q))] = E1

w[Q1(q)−Q2(q)].

In short: unambiguous Bayesianism makes predictable polarization impossible.
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It turns out that the constraint that evidence is unambiguous is crucial in this result.

In fact, whenever evidence is ambiguous, it can be predictably polarizing.

The first step in showing this is to note that if P2 is potentially ambiguous, then

this implies that there must be some world at which E2[P 2(q)] 6= P 2(q), i.e. the time-2

rational confidence does not equal the time-2 expectation of the time-2 rational confid-

ence:

Theorem 4.6 (Samet 2000). If P2 is potentially ambiguous, then there is some w and

q such that E2
w[P 2(q)] 6= P2

w(q).

Proof Sketch. Supposing that for all w, q, E2
w[P 2(q)] = P2

w(q), we show that P2 must

be unambiguous. Note that P2 can be viewed as a (finite) Markov chain with W

the states and P2
w(w′) the transition probabilities. As such, we can partition W into

its communicating classes, E1, ..., En, plus perhaps a set of transient states E0. The

claim that for all w, q, E2
w[P 2(q)] = P2

w(q) is equivalent to the claim that for all w,

P2
w is a stationary distribution with respect to the Markov chain; i.e. where M is its

transition matrix and vw is the vector corresponding to P2
w, vwM = vw. Every Ei has

a unique stationary distribution πi, therefore if w ∈ Ei, Piw = πi, and therefore (since

πi(Ei) = 1) P2
w(P 2 = πi) = 1. Moreover, E0 must be empty, for any stationary of M

assigns 0 probability to all transient states, and by definition P2
w(w) > 0, so since Piw

must be stationary, w /∈ E0. Thus at all w, P2
w(P 2 = πi) = 1, which implies that P2 is

not potentially ambiguous.

For an elementary proof of this result (without appeal to Markov chain convergence,

etc.), see Dorst (2019).

Using this result, it’s easy to find frames that are predictably polarizing:

Fact 4.7 (“Fact 2”, in the blog post). If P2 is potentially ambiguous, then there are

frames 〈W,P1,P2〉 on which P2 is predictably polarizing for P1.

Proof Sketch. By Theorem 4.6, there is a w and q such that E2
w[P 2(q)] 6= P2

w(q); there-

fore any frame on which P1
w = P2

w will be one on which P2 is predictably polarizing

for P1. In fact, any P1
w that is not stationary with respect to the transition-matrix

corresponding to P2 will do.

Example 4.8. Let our dynamic frame have W = {a, b}; for all w, P1
w(a) = 0.5, and

P2 as described in the below Markov diagram or (equivalently) transition matrix:

Note that P1
w = (0.5, 0.5), but (0.5, 0.5)

(
0.6 0.4

0.2 0.8

)
= (0.4, 0.6), which is just to say

that E1
w[P 2(b)] = 0.6 > 0.5 = P 1

w(b), so this frame is predictably polarizing on {b}. You

start out (certain that you should be) 50% confident of b, but your best estimate is that
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a b

0.4

0.2

0.6 0.8

(
0.6 0.4
0.2 0.8

)

Figure 4: A probability frame.

after getting the incoming evidence P2, your posterior confidence should be higher in

{b}.
Note two things. First, this predictable shift is driven by an asymmetry in ambiguity:

P2
a is more ambiguous than P2

b , since it is less certain of what P 2 is: P2
a is 60-40 split

between [P 2 = P2
a ] and [P 2 = P2

b ], while P2
b is 20-80 split between these two.

Second, despite this predictable shift in opinion, P2 accuracy-dominates P1: at every

world w, P2
w is uniformly more confident of all truths and less confident of all falsehoods

than P1
w. (At a, P2

a(a) = 0.6 > 0.5 = P1
a(a), and at b, P2

b (b) = 0.8 > 0.5 = P1
b (b).) As

such, the transition from P1 to P2 validates the value of evidence.

I turn now to formalizing and generalizing this notion, so that we can state Ration-

ality as Value more precisely, and explain how it subsumes unambiguous Bayesianism

and permits predictable polarization.

4.2 Rationality as Value

The basic idea behind the value of evidence is this. Given some options, the rational

option is that which maximizes expected value relative to the rational credence function.

If you have are unsure what the rational credence function is (or will be), then we can

consider the expected value of “doing the rational thing—whatever it turns out to be.”

Evidence is valuable iff, no matter what options you have, the expected value of doing

the rational thing given that evidence is never lower than simply ignoring the evidence

and picking an option. The basic idea was made famous by Good (1967); see Salow

(2020) for a modern exposition, as well as Huttegger (2014); Ahmed and Salow (2018);

Das (2020). Here I’ll follow most closely the formalism and results of Dorst (2020a).

Here’s how to formalize the value of evidence. Note that W is a partition of logical

space, and thus can be thought of as a question (Hamblin 1976; Roberts 2012). Thus

when we use such a model, we are implicitly relativizing both the agent’s beliefs and

the options they face to a question—namely, “Which w ∈W is actual?” In the coming

weeks, this relativization to questions will be important, so I’ll make it explicit in what

follows.

Given a question W , and a decision of which of a set of options to perform, standard

decision theory treats your options O1, ..., O
n as simply functions from worlds (answers

to the question) w to numbers Oi(w) representing the amount of value (or “utility”)

that option Oi yields at w. In other words, your options are simply a (I’ll assume finite)
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set of random variables whose values are determined by the cells of the partition W . In

such a case, I’ll say that the decision between the Oi is a decision based on W .

The rational thing to do, given question W , a rational credence function π, and

these options, is to choose an option Oi that maximizes expected value relative to π: an

option Oi such that, for all Oj , Eπ[Oi] ≥ Eπ[Oj ] (where Eπ[X] :=
∑
t π(X = t) · t).

In our probability frames, the rational credence function for you to have varies across

worlds. Thus, given options O1, ..., On, we can consider the option “doing the rational

thing, whatever it is”. Let r be a function from probability functions π to options Oi

that maximize expected utility relative to π—it is a policy for choosing expectedly-best

options based on your probabilities. Since “P i” is a definite description for “the rational

credence function at time i”, that means that “r(P i)” is a definite description for “the

option chosen by policy r given the rational credence function P i, whatever it is”. Thus

we can treat r(P i) as a random variable as well, such that r(P i)(w) = r(Piw)(w), i.e. the

actual value, at w, of picking an option r(Piw) that maximizes expected value according

to Piw.

Say that a probability function π values transitioning to credence function P i, re-

lative to question W , iff, for any decision based on W , the expected value of (1) first

transitioning and then rationally choosing an option is always higher than (2) simply

choosing an option without first transitioning. Formally:

Definition 4.9. A probability function π values P i relative to question W iff, for any

finite set of options O1, ..., On based on W and policy r of choosing maximal-expected-

utility options, Eπ[r(P i)] ≥ Eπ[Oj ], for allOj . A probability frame 〈W,P1,P2〉 validates

the value of evidence iff, if i ≤ k, then for all w, P iw values P k.12

The theory I stated in the blog post, now stated precisely, is:

Rationality as Value: A transition from beliefs π to beliefs P i is rational iff, π

values P i relative to the live question W .

The remaining unanalyzed notion here is what counts as a “live” question W . Usually in

decision theory this question is not directly addressed, but “modeled around” by using

a partition/question that is fine enough to represent what’s of interest for modeling

purposes. We could do the same, and simply always make sure that we use a W fine

enough to capture all relevant distinctions. However, I’ll argue next week that there is an

interesting and important sense in which it makes sense to say that a given transition

is (at least boundedly) rational so long as it it is valuable relative to a relevant but

relatively coarse-grained question.

The first result we can show is that Rationality as Value subsumes unambiguous

Bayesianism if we assume that evidence is never ambiguous:

12 The constraint i ≤ k makes it so that at time 1 you value both the time-1 rational credences and
time-2 ones, while at time 2 you value only the time-2 ones.
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Fact 4.10 (“Fact 3” in the blog post). If P1 and P2 are not potentially ambiguous,

then if 〈W,P1,P2〉 validates the value of evidence, then it is an unambiguous Bayesian

model.

Proof Sketch. We need to show that there is some partition Π such that, for all w,

P2
w(·) = P1

w(·|Π(w)). Let our partition Π = {[P 2 = π1], ..., [P 2 = πn]}, i.e. be the

possible future rational credence functions. By reflexivity, every w in [P 2 = π1] has

P2
w(P 2 = P2

w) > 0. Since P2 is unambiguous, it follows that P2
w(P 2 = P2

w) = 1, so that

for all x: if P2
w(x) > 0, then P2

x = P2
w. Suppose, for reductio, there is an x such

that P2
x(·) 6= P1

x(·|Π(x)) = P1
x(·|P 2 = P2

x). WLOG, we can assume that, for some q,

P2
x(q) = t > t− ε = P1

x(q|P 2 = P2
x), for some ε > 0. Since every world in this partition

cell has the same credence function, that means [P 2 = P2
x] ⊆ [P 2(q ∧ [P 2 = P2

x]) ≥ t].
We construct a value-of-evidence failure as follows. Let O1 = 0 everywhere, and for

a > 0, let

O2 =


1− t+ a if q ∧ [P 2 = P2

x]

−t if ¬q ∧ [P 2 = P2
x]

0 otherwise

Let r be any rational-option function, i.e. function from π to an option in {O1, O2}
that maximize expected utility relative to π. Note that r(P2

x) = O2, since E2
x[O2] =

t · (1− t+ a) + (1− t)(−t) = ta > 0, while E2
x[O1] = 0. This means E1

x[r(P 2)|P 2 = P2
x] =

E1
x[O2|P 2 = P2

x]. Outside of [P 2 = P2
x], both options yield 0 value everywhere, thus

E1
x[r(P 2)] ≥ 0 iff E1

x[r(P 2)|P 2 = P2
x] ≥ 0, iff E1

x[O2|P 2 = P2
x] ≥ 0. We show that this can

be made false by choosing a small enough.

We know P1
x(q ∧ [P 2 = P2

x]|P 2 = P2
x) = P1

x(q|P 2 = P2
x) = t− ε. Thus

E1
x[O2|P 2 = P2

x] = (t− ε)(1− t+ a) + (1− t+ ε)(−t)

= t− t2 + ta− ε+ tε− εa− t+ t2 − tε

= ta− ε− εa = a(t− ε)− ε.

Sending a → 0, this will go negative. Thus E1
x[O2|P 2 = P2

x] < 0, and hence, by the

above, E1
x[r(P 2)] < 0 = E1

x[O2], meaning that P1
x does not value P 2, so 〈W,P1,P2〉

does not validate the value of evidence.

An immediate corollary of Fact 4.4 and Fact 4.10 is that if evidence is unambiguous

and satisfies the value of evidence, it is not predictably polarizing.

The final result we need to establish (“Fact 4” in the blog post) is that Rationality

as Value permits ambiguous evidence—and, therefore, predictably polarizing evidence.

We’ve already seen an example of this in Example 4.8, but for the arguments to come

we will need a much more general characterization of transitions that satisfy Rationality

as Value.
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A fully general characterization of the value of evidence in the context of ambiguous

evidence has been an open question for years. In a new paper some co-authors and I

have finally have gotten such a result (Dorst et al. 2020), but its contours remain to be

fully explored; moreover, we do not yet have tractable algorithms for generating and

testing such general models.

Instead we can use a result proved by Geanakoplos (1989) (and generalized in Dorst

2020a) to characterize a tractable sub-class of the frames the validate the value of

evidence.

Let the i-neighborhood of w be the set of worlds assigned positive probability by

evidence i at w: Eiw := {x : Piw(x) > 0}. Instead of focusing on general belief-transitions

between a probability function π and P i, we will focus on those that can be obtained

by conditioning π on the various i-neighborhoods—this will be our tractable subclass

of probability frames:

Definition 4.11. 〈W,π,Pi〉 is a conditioning update iff, for all w ∈ W , Piw(·) =

π(·|Eiw). 〈W,P1,P2〉 represents a (dynamic) conditioning frame13 iff there is a π

such that both 〈W,π,P1〉 and 〈W,π,P2〉 are conditioning updates.

Note that if 〈W,π,Pi〉 is a conditioning update, then Pi is not potentially ambiguous

iff, the i-neighborhoods form a partition of E := {w : π(w) > 0}. Such an update is

unambiguous Bayesian. However, conditioning updates allow for ambiguity whenever

the i-neighborhoods are not partitional (cf. Williamson 2000, 2008, 2014, 2019; Cresto

2012; Lasonen-Aarnio 2013; Ahmed and Salow 2018; Salow 2018, 2019; Das 2020).

Definition 4.12. 〈W,π,Pi〉 is a forest update14 iff it is a conditioning update and

within E := {w : π(w) > 0}, we have:

(1) Ei is reflexive: for all w ∈ E, w ∈ Eiw;

(2) Ei is transitive: for all w, x ∈ E, if x ∈ Eiw, then Eix ⊆ Eiw; and

(3) Ei is nested : for all x, y in E, either Eix ⊆ Eiy or Eix ⊇ Eiy or Eix ∩ Eiy = ∅.

Given these definitions, we can state a characterization of the value of evidence

within conditioning updates:

Theorem 4.13 (Geanakoplos 1989; this is “Fact 4” in the blog post). Assume 〈W,π,Pi〉
is a conditioning update. Then π values Pi iff 〈W,π,Pi〉 is a forest update.

(The proof is complicated; see (Geanakoplos 1989, Theorem 1) for one direction of

it; (Dorst 2020a, Theorem 7.4) generalizes the condition to entire frames, and proves

both directions.)

13 A.k.a. a “prior frame” in the terminology of Dorst (2020a,b).
14 So called because the the binary relation xRy iff Pi

x(y) > 0 has the structure of a forest once we
mod out on equivalent worlds; see (Dorst 2020a, Appendix A).
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Since any forest update which is not a partition is one in which Pi is ambiguous, this

generates a large class of ambiguous-but-valuable updates. Moreover, many (in fact all,

I believe—but won’t prove it here) such updates in involve predictable polarization, as

can be seen in the following simple example:

Example 4.14. W = {a, b}; for all w, P1
w(a) = 0.5, and E2

a = {a, b} while E2
b = {b}.

The frame thus looks like this, with arrows from w representing the worlds visible under

E2
w:

a b

0.5 0.5

Thus P2
a = P1

w, while P2
b = P1

w(·|{b}). Note that P1
w(b) = 0.5, but E1

w[P 2(b)] =

0.5 · 0.5 + 0.5 · 1 = 0.75, so this update is predictably polarizing on {b}.

In some of the arguments to come, will use Theorem 4.13’s characterization of

ambiguous-but-valuable evidence, along with various tractable characterizations of forest

updates (e.g. Dorst 2020a, Theorem 5.8) to generate large, random updates that are am-

biguous but satisfy the value of evidence, in order to track various statistical properties

that they have.
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5 Profound, Persistent and Predictable Polarization

Here’s the link to the full post, published on October 3, 2020.

Post Synopsis: I explained how, in principle, the mechanism of ambiguous

evidence can lead to predictable polarization that is both profound (both

sides disagree massively) and persistent (neither side loses confidence upon

discovering this disagreement). This forms the theoretical foundation on

which I will build the argument that the empirical mechanisms that drive

real-world polarization are rational.

Appendix Summary: In this appendix entry, I’ll (1) offer several variant

models of the word-completion task, explaining why they all validate the

value of evidence, and (2) argue that by iterating such tasks, we can arrive

at profound, persistent polarization through rational mechanisms.

5.1 Models of the word-completion task

In the blog post, the model I used of the word-completion task was this one:

1/4

1/41/2

1

2
3

1
3

2
3

1
3

No Word Word

Find:

Don’t Find:

Figure 5: A graded asymmetry in the word-completion task.

There are three possibilities: wf , where there’s a word and you find one (top right); wf ,

where there’s a word and you don’t find one (bottom right); and wf , where there’s no

word and you don’t find one (bottom left). Before getting the evidence, you should be
1/2 confident you’ll end up in wf , and 1/4 confident you’ll end up in each of wf and wf—

as indicated by the blue numbers. Thus in our probability frame, for all possibilities w

P1
w(wf) = P1

w(wf) = 1/4, while P1
w(wf) = 1/2.

Meanwhile, after getting the evidence, if there’s a word and you find one, you should

be certain of this: P2
wf (wf) = 1. If there’s no word and you don’t find one, you should

be 2
3 confident of that, and 1

3 confident that there is a word and you didn’t find one:

P2
wf

(wf) = 2
3 and P2

wf
(wf) = 1

3 . If there’s a word but you don’t find one, you should
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be 2
3 confident of this and 1

3 confident that there’s no word and you didn’t find one:

P2
wf

(wf) = 2
3 , while P2

wf
(wf) = 1

3 .

Note that evidence is ambiguous when you don’t find a word, because at both pos-

sibilities you should leave open that the rational credence that there’s a world might be
1
3 (if you’re at wf) or 2

3 (if you’re at wf).

Intuitively, we can see that this frame will satisfy the value of evidence because in

transitioning from P1 to P2, each world gets uniformly more confident in truths and

less confident in falsehoods, since the probabilities become more centered on the actual

world.

Formally, the easiest way to prove this is to invoke a theorem from Dorst et al. (2020).

For any candidate for the rational credence function Piw, let P̂iw := P(·|P i = Pw) be

the credence function that would be rational were Piw to be informed that it was

the rational credence function—i.e. were its higher-order doubts about its ambiguous

evidence to be removed (cf. Elga 2013; Dorst 2019; Stalnaker 2019). Say that Pi is class-

convex iff for every w, Piw is in the convex hull of {Pix : x ∈W and Pix 6= Piw} ∪ {P̂iw}.
In other words, Piw can be obtained by a mixture of these other probability functions:

there are some λwx ≥ 0 which sum to 1 such that Piw = λwwP̂
i
w +

∑
Pi

x:Pi
x 6=Pi

w

λwxPix. The

characterization of the value of evidence in general, which generalizes Theorem 4.13, is:

Theorem 5.1 (Dorst et al. 2020). π values Pi relative to W iff 〈W,Pi〉 is class-convex

and π is in the convex hull of {Piw : w ∈W}.15

Given this, it’s not hard to see that, in our word-completion frame, P1
w values P2.

P2 is class-convex because for each w, P̂2
w(w) = 1 (removing all evidential ambiguities

makes you certain of which possibility you’re in), and:

· P2
wf = P̂2

wf

· P2
wf

= 1
2 P̂

2
wf

+ 1
2P

2
wf

, since 1
2 (0, 1) + 1

2 ( 2
3 ,

1
3 ) = ( 1

3 ,
2
3 ).

· P2
wf

= 1
2 P̂

2
wf

+ 1
2P

2
wf

, since 1
2 (1, 0) + 1

2 ( 1
3 ,

2
3 ) = ( 2

3 ,
1
3 ).

Meanwhile, P1
w is in the convex hull of the {P2

x} since (1/2, 1/4, 1/4) = 3
4 ( 2

3 ,
1
3 , 0) +

0( 1
3 ,

2
3 , 0) + 1

4 (0, 0, 1).

Thus this model validates the value of evidence.

As we’ve seen, it’s predictably polarizing because, letting word = {wf,wf}, we have

that P1
w(word) = 1

2 but E1
w[P 2(word)] = 1

2 ·
1
3 + 1

4 ·
2
3 + 1

4 · 1 = 7
12 >

1
2 .

There are many, many other models we could use to illustrate the same point. Figure

6 gives a simple one that uses a conditioning update (Definition 4.11), i.e. where P2
w is

always recoverably from P1
w by conditioning on some proposition.

In this model, whenever there’s a word, you should be sure that there is—even if you

don’t in fact find it, you should find it. P1
w(word) = 1

2 but E1
w[P 2(word)] = 1

2 ·
1
3 + 1

2 · 1 =

15Note: this assumes that Pi is reflexive; if it is not, then we simply restrict W to the set of worlds
assigned positive probability by π; all of these must be reflexive for π to value them.
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1/4

1/41/2

1

12
3

1
3

No Word Word

Find:

Don’t Find:

Figure 6: A conditioning asymmetry in the word-completion task.

2
3 . It validates the value of evidence by Theorem 4.13 because it is a forest update

(Definition 4.12).

Figure 7 gives a more realistic conditioning update, in which there is a range of levels

confidence it might be rational to have if you don’t find a word.

1/4

1/8

1/8

1/4

1/4

“Word-like” Obvious

No Word Word

Find:

Don’t Find:

Figure 7: A complex conditioning asymmetry in the word-completion task; here pos-
terior probabilities at w are obtained by conditioning the prior (blue fractions) on the
smallest red rectangle that contains w.

In this model, if there’s no word and you don’t find one there’s some chance you

should be 2
3 confident of this, and also some chance you should only be 1

2 confident of

this; meanwhile, if there is a word and you don’t find it, there’s some chance you should

be 1
2 confident of this, and some chance you should be certain of this (you should find a

word). Labeling the 4 possibilities in the Don’t Find section a, b, c, d from left to right,

we have P2
a(word) = 1

3 , P2
b (word) = P2

c (word) = 1
2 , and P2

d(word) = 1. Interpretively,

we might think of {b, c, d} as possibilities where the letter-string looks “word-like”, and

{d} as one where there is obviously a completion which you should find (even though,

in fact, you don’t).

In this model, E1
w[P 2(word)] = 1

4 ·
1
3 + 1

4 ·
1
2 + 1

8 ·
1
2 + 1

8 · 1 + 1
4 · 1 = 31/48 ≈ 0.65, while
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of course P1
w(word) = 1

2 . Again, this model validates the value of evidence because it is

a forest update (Definition 4.12).

In all these cases, we can use the resulting evidence to polarize people by dividing

them up into Headsers and Tailsers. Using the simple graded asymmetric model from

Figure 5, this yields the following different models for Headsers and Tailsers:

Tailsers:

1/4

1/4 1/2

1

2
3

1
3

2
3

1
3

Tails Heads

Find:

¬Find:

Headsers:

1/4

1/41/2

1

2
3

1
3

2
3

1
3

Tails Heads

Find:

¬Find:

Figure 8: Headsers vs. Tailsers in simple graded-asymmetry model of word-completion
task

In this model, both Headsers and Tailsers start out 50% confident the the coin will

land heads, but if it does then Tailser should be 2
3 confident it did while Headsers should

be either 2
3 or 1, while if it doesn’t land heads then Tailsers should be either 0 or 1

3

confident that it did, while Headsers should be 1
3 . In expectation, Headsers should end

up 7
12 confident of heads, while Tailsers should end up 5

12 confident of it.

Similar lessons could be derived using any of our variant models of the word-

completion task above.

5.2 Profound and Persistent Polarization

How can we use these models to generate profound and persistent polarization? The

basic idea is to iterate this process n times with n independent coin flips and word-

completion tasks for both Headsers and Tailsers. As n grows large, if the evidence in

each task works as above, then we can all expect Headsers to become confident that the

proportion of heads is roughly 7
12 , while Tailsers will become confident it’s roughly 5

12 .

Focus on a given Headser, though the same reasoning will apply to Tailsers. Let Qi

be the question of what happens on the ith toss: will the coin land heads, and will our

Headser find a completion or not? Thus Qi = {HiFi, HiF i, HiF i}. Let uiQi be the

partition obtained by crossing all the Qi. The key formal result is that even if the Qi

are logically and evidentially independent at all times (so that the rational credence in

the answers to some of the Qi have no bearing on the rational credence in the others), if
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evidence is ambiguous then it can nevertheless be the case that the evidential transition

is valuable with respect to each Qi, but predictably and profoundly polarizing with

respect to their join uiQi. (And, as a result, is not valuable with respect to uiQi.) This

is impossible when evidence is unambiguous.16

More precisely, let the series of rational credence functions P1, ...,Pn be defined as

follows, offering a simple iteration of our above model for our Headser:

Simple Headser iteration:

· For i > k, for all w: Pkw(HiFi) = Pkw(HiF i) = 1
4 , while Pkw(HiF i) = 1

2 .

· For i ≤ k:

· If w ∈ HiFi, then Pkw(HiFi) = 1;

· If w ∈ HiF i, then Pkw(HiF i) = 2
3 and Pkw(HiF i) = 1

3 ;

· If w ∈ HiF i, then Pkw(HiF i) = 2
3 and Pkw(HiF i) = 1

3 .

As a result, for each k, 〈Qk,Pk−1,Pk〉 is equivalent to the simple graded-asymmetry

model for our Headser represented on the right of Figure 8. Since these models all

validate the value of evidence, that means that each time the Headser is presented with

a word-completion task, the evidence they are presented is valuable with respect to the

question they are then presented with—namely, “Will this coin land heads, and will I

find a heads?”

Moreover, the answers to the Qi (as well as facts about the rational credence in those

answers) are mutually independent at all times k.

It follows, I claim, that at each time k, it is (at least boundedly) ra-

tional to obtain evidence Pk at time k. There are a variety of ways to support

this conclusion, but the basic idea is simple enough. People cannot consider all the

distinctions generated by fine-grained question like uiQi, for such distinctions lead to

a combinatorial explosion that makes probabilistic inference (or, really, any inference)

over them intractable (Dagum and Luby 1993). With only 10 coin flips, that is already

310 = 59046 possibilities to track. Any sense of “rational” in which its an open question

whether humans are reasoning rationally clearly is not one on which they must be ex-

pected to track all these distinctions; instead, some more minimal or “bounded” notion

of rationality is the operative one (Simon 1956, 1976; Cherniak 1986). A plausible such

notion is this: when faced with some evidence about a question that is independent

of all other relevant questions, it is rational to gather that evidence if with respect to

that question, the evidence is valuable. If so, then each step in the transition from P1

16 Proof sketch: If evidence is unambiguous and valuable with respect to each Qi, then
for each qi ∈ Qi, P0

w(qi|Pn = π) = π(qi) (Elga 2013; Gallow 2017; Dorst 2020a). To
show that it’s valuable with respect to uiQi, we need to show that for any qki

∈ Qi:
P0
w(qk1

∩ ... ∩ qkn |Pn = π) = π(qk1
∩ ... ∩ qkn). An induction on the size of n, plus independence gives

us that for any such π, π(qk1
∩ ... ∩ qkn) = π(qk1

) · · ·π(qkn ), and that P0
w(qk1

∩ ... ∩ qkn |Pn = π) =
P0
w(qk1

∩ ... ∩ qkn−1
|Pn = π) · P0

w(qkn |Pn = π, qk1
∩ ... ∩ qkn) = π(qk1

) · · ·π(qkn−1
) · P0

w(qkn |Pn = π) =

π(qk1
) · · ·π(qkn ) = π(qk1

∩ ... ∩ qkn).
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to P2 to... to Pn is rational. In effect, the claim is that people can’t assess whether

the evidence is valuable with respect to all possible questions (or even the fine-grained

question uiQi), so instead they must simply check whether the evidence is “locally”

valuable with respect to the relevant questions at issue.

UPDATE: I’ve recently discovered that stronger result is possible, though I don’t

yet have the time to write out all the details. What’s true is this. LetQ be the question of

how all the coins land in all the tosses, i.e. the partition {H1H2....Hn, H1...Hn−1Tn, T1...Tn}.
Then a slight variant on the above series of transitions has the following result. At each

time i, P i values the transition to P i+1 with respect to question Q—so at each stage you

expect that you’re getting more accurate in your beliefs about Q. Yet P 0 expects with

high confidence that Pn will be strongly polarized, and thus P 0 does not value Pn. In

effect, we have a diachronic tragedy where at each stage you’re doing what makes sense

in gathering the evidence, but by the end you’ve foreseeably gotten much less accurate

about the overall distribution of heads. The trick, which involves technicalities I can’t

add just yet but will add soon, is to “zero out” your higher-order uncertainty about Q

in between each coin that’s presented. More details forthcoming.

On this way of setting things up, I think it should be relatively uncontroversial that

there’s a substantive sense in which each transition is epistemically rational, despite the

fact that collectively they are predictably, profoundly polarizing.

So let’s suppose that gathering the evidence at each stage is rational. What happens

our Headser goes through all these transitions? Consider what can be expected at time

0, before she’s looked at any of the tasks. Since each of these tasks are independent,

for each 1 ≤ i ≤ n, Pn(Hi) is an i.i.d. random variable with respect to P0
w, such that

E0
w[Pn(Hi)] = 7

12 . By the weak law of large numbers, it follows that at n → ∞, P0

become arbitrarily confident that the mean of the Pn(Hi) is arbitrarily close to 7
12 .

Thus at the starting stage, both Headsers and Tailsers will be arbitrarily confident that

Headsers will end up with an average confidence in heads (across coin flips) close to 7
12 .

By exactly parallel reasoning, they both can be arbitrarily confident that Tailsers will

end up with an average credence in heads close to 5
12 .

Using this, we can establish that they will predictably (with arbitrarily high prob-

ability) be such that Headsers will end up arbitrarily confident of some proposition q,

while Tailsers will end up arbitrarily confident in its negation.

Precisely, let Mostly-Heads = more than half the tosses landed heads. We know

(with high probability) that Headsers will wind up with an average confidence in heads

around 7
12 . If follows that they will be arbitrarily confident that roughly 7

12 of the coins

landed heads. To see this, let A be the set of Hi which they should assign credence 1

to, B be the set they should assign credence 2
3 to, and C be the set they should assign

credence 1
3 to. Since the coins are independent, the Hi in each of these sets are, relative

to PnH , i.i.d., and therefore PnH will be arbitrarily confident that roughly 2
3 of the tosses
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in set B landed heads and that roughly 1
3 of the tosses in C landed heads (and they will

be certain that all those in A landed heads). At the outset we are arbitrarily confident

that |A| ≈ 1
4n, |B| ≈ 1

4n, and |C| ≈ 1
2n. Thus we are arbitrarily confident that Headsers

will end up arbitrarily confident that roughly 1
4n + 2

3 ·
1
4n + 1

3 ·
1
2n of the coins landed

heads, i.e. that roughly 7
12n of the coins landed heads.

It follows that we can be arbitrarily confident at the outset that Headers should end

up arbitrarily confident of Mostly-Heads: P0
w(PnH(Mostly-Heads) ≈ 1) ≈ 1. By parallel

reasoning, we can also be arbitrarily confident that Tailsers will end up arbitrarily con-

fident that Mostly-Heads is false. Letting PnT be the posterior rational Tailser confidence,

we have P0
w(PnT (Mostly-Heads) ≈ 0) ≈ 1.

That is predictable, profound polarization: there are propositions such that Head-

sers will, predictably, become arbitrarily more confident of them than Tailsers are.

A similar line of reasoning shows that this polarization will be persistent, in the sense

that learning of these disagreements will not dislodge them. In particular, a variant on

the above argument shows that even after Headsers have gone though the process, and

now should be confident that roughly 7
12 of the coins landed heads, they should still

be arbitrarily confident that Tailsers should be arbitrarily confident that less than 1
2

of them landed heads. In particular, Headsers should think that on roughly 2.5
12 of the

tosses, Tailsers should have credence 0, on roughly 2.5
12 they should have credence 1

3 , and

on the remaining 7
12 they should have credence 2

3 . By the same law-of-large-numbers

argument, they then should be arbitrarily confident that Tailsers should be arbitrarily

confident that roughly 2.5
12 ·

1
3 + 7

12
2
3 = 11

24 ≈ 0.458 of the coins landed heads. Thus

Headsers should be arbitrarily confident that Tailsers should be arbitrarily confident

that Mostly-Heads is false: PnH(PnT (Mostly-Heads) ≈ 0) ≈ 1.

It follows that Headsers should be unmoved when they find out that Tailsers disagree

with them: PnH(Mostly-Heads | PnT (Mostly-Heads) ≈ 0) ≈ PnH(Mostly-Heads) ≈ 1. A parallel

argument establishes that, likewise, Tailsers should be unmoved when they discover that

Headsers should be confident of Mostly-Heads: PnT (Mostly-Heads | PnH(Mostly-Heads) ≈ 1) ≈
PnT (Mostly-Heads) ≈ 0.

Thus, through rational processing of ambiguous evidence, it’s possible to for people

who agree on everything at time 0 to predict with arbitrary confidence that one of them

should wind up very confident of q, the other should wind up very confident of ¬q,
and that neither of them should be surprised or moved when they discover that this

disagreement has come to pass. That is how, I claim, predictable, profound, persistent

polarization can be rational.

In the rest of this series, I’ll argue that this theoretical possibility is not an idle

one: rational processing of ambiguous evidence can help explain many of the real-world

processes that drive polarization.

31



6. CONFIRMATION BIAS AS AVOIDING AMBIGUITY

6 Confirmation Bias as Avoiding Ambiguity

Here’s the link to the full post, published on October 17, 2020.

Post Synopsis: I explained how a form of confirmation bias known as

biased assimilation—the tendency to interpret evidence in a way that fa-

vors your prior beliefs—is often the rational response to conflicting evidence.

This is because (1) assessing evidence requires doing a form of cognitive

search which, like our word-completion tasks, engenders ambiguity, (2) of-

ten the way to make your beliefs most accurate is to avoid such ambiguity,

and (3) this corresponds to doing cognitive searches that are expected to

confirm your prior beliefs.

Appendix Summary: In this entry I’ll give a formal definition of rational

confirmation bias (§6.1) and describe the details of the simulations men-

tioned in the blog post (§6.2).

6.1 Rational Confirmation Bias

For summaries of the literature on confirmation bias, see Nickerson (1998); Whittlestone

(2017). For results on biased assimilation in particular, see Lord et al. (1979); Plous

(1991); Baron (1995); Kuhn and Lao (1996); Munro and Ditto (1997); Taber and Lodge

(2006).

On a natural definition, confirmation bias can be rational if and only if evidence can

be ambiguous. After all, confirmation bias is meant to be a tendency to gather and

interpret evidence in a way that can be expected to confirm your prior beliefs, i.e. can

be expected to move your rational probabilities in a particular direction. That is just

what I proved, in §4, was possible if and only if evidence is ambiguous. In particular,

recall that unambiguous Bayesian models of rational polarization entail that no way

of getting evidence can be predictably polarizing, since your opinions should always

equal your expectation of the opinions you should have after getting and interpreting

the evidence (Fact 4.4). Moreover, once evidence is ambiguous, this is always possible

(Fact 4.7).

More precisely, say that your strategy of gathering and interpreting evidence is

confirmatory for q between time 1 and time 2 iff at time 1 you should expect the

rational credence in q to go up between times 1 and 2: E1[P 2(q)− P 1(q)] > 0. Then

it follows immediately from Fact 4.4 that if evidence is always unambiguous-Bayesian,

then no strategy is ever confirmatory, for any q (cf. White 2006; Titelbaum 2010; Salow

2018; Gallow 2019; Das 2020).

Moreover, it follows from Fact 4.7, many such strategies will be confirmatory. For

instance, a choice to look at a word-completion task, and thereby receive evidence that
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should induce the belief-transition in any of the models offered in §5.1, would be a

confirmatory strategy for the claim that the task is completable.

Confirmation bias can then be defined as a tendency to prefer ways of gathering

and interpreting evidence that are confirmatory for your prior beliefs. Following the

theory of rationality given in §4, such strategies are epistemically rational if they satisfy

the value of evidence (Definition 4.9) with respect to the live question you care about.

This distinguishes my claim about rational confirmation bias from many others in

the literature. First, any models which use unambiguous-Bayesian models—those where

credences are represented with precise probability and updated by conditioning on a

partition—cannot allow for confirmation bias in this sense (Kelly 2008; Hahn and Harris

2014; Jern et al. 2014; Pallavicini et al. 2018; Benôıt and Dubra 2019).17 Second,

many models of confirmation bias (or polarization) involve deviations from unambiguous

Bayesianism in ways that lead to clear violations of the the value of evidence, for example

when agents “double-update” on signals (Rabin and Schrag 1999; Fryer et al. 2019),

forget question-relevant evidence (Singer et al. 2019), fail to track correlations between

different pieces of evidence (Loh and Phelan 2018), ignore certain types of evidence

(Hegselmann and Krause 2002), or fail to reason through the logical consequences of

their evidence (Stone 2020). For other models it is not straightforwardly obvious: it is

not straightforward whether the updating mechanisms used in O’Connor and Weatherall

(2018); Weatherall and O’Connor (2020) can be given a value-validating interpretation;

I believe the model of ambiguity given in Baliga et al. (2013) violates the sure-thing

principle and therefore the value of evidence, but I am not yet certain about that.

(Dear Reader: Do you know of other rational-seeming models of confirmation

bias I haven’t discussed? Please send me references! Email me at kevindorst@pitt.edu.)

6.2 Cognitive Search Models and Simulations

Cognitive search models are generalizations of the word-completion task model from

Figure 5. Such a model has the structure given in Figure 9:

Blue numbers in cells are prior probabilities of ending up in them; labeled arrows from

a cell are posterior probabilities if you end up in that cell. π(C) is the prior probability

of the search being completable; π(F |C) is the probability of finding a completion given

that it’s completable; and a is a constant between 0 and 1−π(C). As can be seen, when

the the search is not completable, you should update by conditioning your credence

on not finding one. When it is completable and you find one, you should update by

conditioning your credence on finding one. And when it is completable but you don’t

find one, you should update it by conditioning your credence on not finding one, but

17No such model can offer confirmatory evidence in my sense. However, there are other senses in
which they can allow for predictable polarization, e.g. allowing that you and I can predict that one of
us will become more confident in q, while the other will become less confident—but we cannot predict
which will move in which direction.
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π(C)π(F |C)

π(C)π(F |C)π(C)

1

π(C) + a

1− π(C)− a

π(C|F )

π(C|F )

Not completable Completable

Find:

Don’t Find:

Figure 9: An arbitrary cognitive-search model

then shifting your credence somewhat toward it being completable—enough so that your

credence in C ends up higher than it was previously.18

Any such cognitive search models is confirmatory for the claim that the search is

completable, in the sense that π(C) < Eπ[P (C)], where P is the posterior probability.

Moreover, every such transition validate the value of evidence, since the model is class

convex and π is in the convex hull of the posteriors (Theorem 5.1). More intuitively,

note that the posterior is always more accurate about every cell of the partition than

the prior.

The final ingredient is expected accuracy. Here I used the well-known Brier score,

which uses the squared distance between probability and the truth-value of a proposition

to measure that function’s inaccuracy with respect to that proposition (de Finetti 1974;

Joyce 1998; Pettigrew 2016); see Pettigrew (2019) for an accessible overview.

For computational tractability, I used the partition-based version of this. Given

a probability function δ and a question Q (i.e. a partition of the state space) with n

members, and a member of that partition qi ∈ Q, we calculate δ’s Brier inaccuracy

as its average squared distance from the truth (qi) across cells of the partition:

BQ(δ, qi) =
∑
j 6=i

1

n
(δ(qj)− 0)2 +

1

n
(δ(qi)− 1)2

A probability function’s Brier accuracy with respect to qi is simply 1 minus it’s

inaccuracy: AQ(δ, qi) := 1− BQ(δ, qi).

18 Note to self: similar results would hold up if we made this π(C|F ) + a; investigate details.
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The expected accuracy of a cognitive search (relative to π) is simply π’s probability

that it will wind up in any of the possibilities, times the posterior accuracy if so. Let w

be the worlds of our frame, and let Q(w) ∈ Q be the partition-cell that w is a part of.

Then

Eπ[A] =
∑
w∈W

π(w) · AQ(Pw, Q(w))

, where, as in §4 Pw is the posterior probability function at world w, as indicated by

the arrows from possibilities in Figure 9.

To run my simulations, I first randomly generated 10,000 cognitive search models by

randomly choosing values for π(C), π(F |C), and a, and recording both the probability

of finding a word if there is one, as well as the expected accuracy of doing the cognitive

search. The result is given in Figure 10. The line is the minimal least-squares line, with

Figure 10: Correlation in random cognitive search models between the chance of finding
a completion if there is one with expected accuracy of doing the search.

an R2 = 0.43, though of course there is substantial heteroscedasticity.

This is the argument that how likely a cognitive search is to lead to ambiguous

evidence (i.e. to not find a completion) is negatively correlated with accuracy, and

therefore that a concern for accuracy can help guide your choice of which cognitive

search to do.

In particular, I proceeded to model agents who are given a choice between a series of

cognitive searches as follows. Each agent started out with an estimate of the proportion

of pieces of evidence that favored a given proposition q. At each stage, they were

presented with a pair of randomly-generated cognitive search models. The confirmatory

search was one in which a “completable” outcome was one in which the piece of evidence

favored q; the disconfirmatory search was one in which a “completable” outcome was
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one in which the piece of evidence favored ¬q. The agent chose which search to do

by calculating which one had higher expected accuracy. There then was an objective

chance of 50% that the search was completable (irrespective of the agent’s belief about

which search was completable), but the agent’s beliefs about how likely they were to

find a completion if there was one were accurate (so π(F |C) equals the objective chance

of finding given that it’s completable).

If the search was completable and they found a completion, they updated to certainty

that this piece of evidence told in favor of or against q—depending on which search they

were doing. If the search was completable but they didn’t find one, they updated to the

posterior probability of a completion, i.e. that the evidence was in favor (against) q, of

π(C) + a. If the search was uncompletable, they updated to a posterior confidence that

the search was completable, i.e. that the evidence was in favor (against) q, of π(C|F ).

Regardless of how they updated about this particular piece of evidence, they then

updated their overall estimate of the proportion of evidence favoring q as Bayesians

do: their new estimate of the proportion of the arguments they’ve seen that favor q

is a weighted average of their prior estimate (weighted by how many bits of evidence

it contained) and their probability (estimate) for how likely this new piece of evidence

favors q (weighted by 1).19 The process repeats 2000 times.

There are two groups of agents: a “pro” group (like Becca), and a “con” group (like

me). Although probabilities of finding are generated randomly, the “pro” group is 20%

more likely to find a flaw in the evidence that tells against q than that which tells in

favor; vice versa for the “con” group. (The qualitative results are robust to variations in

this parameter.) As a result, via the correlations shown above, the expected-accuracy-

based choice of cognitive search is more likely to lead the “pro” group to scrutinize the

evidence disfavoring q, and the “con” group to scrutinize the evidence that favors q.

I simulated 20 “pro” agents and 20 “con” agents, and plotted the trajectories of

their estimates of the proportion of favorable evidence they’ve seen below in Figure

11. Although the absolute gap between the two agents is not large, note that as more

and more arguments come in, they will become arbitrarily confident of these estimates.

Thus “pro” agents will be nearly sure that more than 50% of the pieces of evidence tell

in favor of q, while “con” agents will be nearly sure that that claim is false.

19To avoid excessive movements at the outset, I start all agents as having seen 200 pieces of evidence
initially and having a 50%-favoring estimate.
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Figure 11: Simulation 2000 cognitive searches for 20 “pro” agents (red lines) who are
more likely to find flaws in detracting arguments, and for 20 “con” agents (blue lines)
who are more likely to find flaws in supporting arguments. All agents choose to do the
search at each stage that maximizes expected accuracy. Thick lines are averages for
each group.
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7 Why Arguments Polarize Us

Here’s the link to the full post, published on October 31, 2020.

Post Synopsis: A prime driver of divergence—the group polarization

effect—is due to the fact that different groups are presented with different

arguments. Though this can seem obviously rational, I explained (appealing

to the results of §4 and Salow 2018) that such polarization can’t be pre-

dictable unless arguments present ambiguous evidence. I sketched a simple

model of how they can do so, and showed simulations of how this model

leads to predictable polarization.

Appendix Summary: Here I’ll describe the formal model of asymmetrically-

ambiguous arguments, and explain how the simulations use this model.

7.1 Formal model of arguments

Imagine you are presented with an argument in favor of a claim q. That argument is

either good—in the sense that, all things considered, it should raise your credence in

q—-or bad—in the sense that, all things considered, it should lower your credence in q.

In the simplest version of such a situation you have a current credence, π(q) = t, and

this credence should either go up to t+ or down to t−.

If the argument is unambiguous, this cannot have an expected shifting effect on your

opinion in q, as we’ve seen in §4. But suppose instead the argument is asymmetrically

ambiguous—if the argument is good, you should be relatively confident it’s good; but

if the argument’s bad, you should be relatively unsure whether it’s good or bad.

Letting P be the future rational credence function, recall (§5.1) that the informed

rational credence function P̂ is the one it’d be rational to have is all your higher-order

uncertainty were removed: P̂w := Pw(·|P = Pw). Supposing your prior is π(q) = t, there

are t+ > t and t− < t such that the argument is good iff P̂ (q) = t+, and bad iff

P̂ (q) = t−.

The value of evidence entails that π(q) = Eπ[P̂ (q)], i.e. your current credence equals

your expectation of the future informed credence (Dorst 2019; Stalnaker 2019). But we

can still have an expected shift in rational credence because the evidence is ambiguous,

and so P (q) 6= P̂ (q).

In particular, a valuable favoring argument model is one in which t = π(q) =

π(good) · t+ + π(bad) · t−, and in which at any b ∈ bad, Pb(bad) ≥ π(bad), and at any

g ∈ good, Pg(good) ≥ Pb(bad) and Pg(good) ≥ π(good). The latter constraint ensures

that although the evidence is valuable (so Pb(bad) must go up from π(bad), and likewise

for Pg(good)), in the good case you should be more confident of the good case than in

the bad case you should be of the bad case.
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In a diagram, these models look like Figure 12:

q

good bad

π

π(bad)π(good)

g1P̂g1(q)

g2P̂g1(q)

b1 P̂b1(q)

b2 P̂b1(q)

Pg1(bad)
Pg1(good)

Pb1(good)

Pb1(bad)

Figure 12: An argument model. All worlds agree on probabilities within blue cells,
hence they are labeled directly. Pg1 = Pg2 and Pb1 = Pb2 .

A disfavoring argument model is formally the same, except that when the argument

is good it lowers the rational credence, so P̂g(q) < π(q)

All such models validate the value of evidence, so π expects to become more accurate

(about q, as well as everything else) by transitioning to them. Nevertheless, most

favorable models are confirmatory for q—simulations of randomly generated models

(pulled uniformly at random from those that meet the above constraints) suggest around

80% of them have Eπ[P (q)] > π(q). Vice versa for disfavoring models.

7.2 Simulations of arguments

For my simulations, I made two groups of agents: 20 who repeatedly received favorable

arguments for q, 20 who received disfavorable ones. All agents began 50% confident of

q. In each iteration, they were presented with a an argument model. In addition to the

above constraints, to prevent wild oscillations of opinion and to simulate hardening of

opinion as more evidence comes in, I made it so that the maximal difference between

P̂g(q) and π(q) was always 0.1
n , where n is the total number of arguments seen by
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this agent (including the current one). Within all these constraints, the models were

generated uniformly at random.

Once the argument was generated, I made it so that the agent had a 50% chance

of their posterior credence in q shifting to Pg(q), and 50% shifting to Pb(g). This is to

simulate the assumption that, as a matter of fact, exactly 50% of the arguments point

in each direction.

This was a single iteration; on the next iteration, the agent’s prior credence was

set to its posterior from the previous iteration, and the process repeated. Each agent

witnessed 1000 arguments.

The results from a typical situation appear in Figure 13.
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Figure 13: Simulation of 20 (blue) agents receiving pro arguments and 20 (red) agents
receiving con arguments for q, when in fact 50% of the arguments point in each direction.

Notably, although ambiguity asymmetries in arguments are a force for polarization,

they are not an insurmountable force. As the proportion of arguments that are actually

evidence for q (i.e. are good if they are in favor of q, and are bad if they are against it)

moves away from 50%, polarization can eventually be overcome. Figure 14 displays the

results for rates of arguments providing evidence for q varying from 0.5 to 0.8.
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Figure 14: Simulations varying the actual proportion of arguments that support q: top
left is 50%; top right is 60%, bottom left is 70%, and bottom right is 80%.
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Gao, George and Smith, Samantha, 2016. ‘Presidential job approval ratings from Ike to

Obama’. Technical report.

Geanakoplos, John, 1989. ‘Game Theory Without Partitions, and Applications to Spec-

ulation and Consensus’. Cowles Fou.

Good, I J, 1967. ‘On the Principle of Total Evidence’. The British Journal for the

Philosophy of Science, 17(4):319–321.

Hahn, Ulrike and Harris, Adam J.L., 2014. ‘What Does It Mean to be Biased. Motivated

Reasoning and Rationality.’ In Psychology of Learning and Motivation - Advances in

Research and Theory, volume 61, 41–102.

Haidt, Jonathan, 2012. The righteous mind: Why good people are divided by politics and

religion. Vintage.

Hamblin, Charles L, 1976. ‘Questions in montague english’. In Montague grammar,

42



REFERENCES

247–259. Elsevier.

Hegselmann, Rainer and Krause, Ulrich, 2002. ‘Opinion dynamics and bounded confid-

ence: Models, analysis and simulation’. Jasss, 5(3).

Hintikka, Jaako, 1962. Knowledge and Belief. Cornell University Press.

Huttegger, Simon M, 2014. ‘Learning experiences and the value of knowledge’. Philo-

sophical Studies, 171(2):279–288.

Iyengar, Shanto, Lelkes, Yphtach, Levendusky, Matthew, Malhotra, Neil, and West-

wood, Sean J., 2019. ‘The origins and consequences of affective polarization in the

United States’. Annual Review of Political Science, 22:129–146.

Jern, Alan, Chang, Kai Min K., and Kemp, Charles, 2014. ‘Belief polarization is not

always irrational’. Psychological Review, 121(2):206–224.

Joyce, James M, 1998. ‘A Nonpragmatic Vindication of Probabilism’. Philosophy of

Science, 65(4):575–603.

Kahan, Dan M., Peters, Ellen, Dawson, Erica Cantrell, and Slovic, Paul, 2017. ‘Motiv-

ated numeracy and enlightened self-government’. Behavioural Public Policy, 1:54–86.

Kelly, Thomas, 2008. ‘Disagreement, Dogmatism, and Belief Polarization’. The Journal

of Philosophy, 105(10):611–633.

Klein, Ezra, 2014. ‘How politics makes us stupid’. Vox, 1–14.

———, 2020. Why We’re Polarized. Profile Books.

Koerth, Maggie, 2019. ‘Why Partisans Look At The Same Evidence On Ukraine And

See Wildly Different Things’. FiveThirtyEight.

Kripke, Saul A, 1963. ‘Semantical analysis of modal logic i normal modal propositional

calculi’. Mathematical Logic Quarterly, 9(56):67–96.

Kuhn, Deanna and Lao, Joseph, 1996. ‘Effects of Evidence on Atittudes: is Polarization

the Norm?’ Psycholohical Science, 7(2):115–120.

Landemore, Hélène, 2017. Democratic reason: Politics, collective intelligence, and the

rule of the many. Princeton University Press.

Lasonen-Aarnio, Maria, 2013. ‘Disagreement and evidential attenuation’. Nous,

47(4):767–794.

Lazer, David, Baum, Matthew, Benkler, Jochai, Berinsky, Adam, Greenhill, Kelly, Met-

zger, Miriam, Nyhan, Brendan, Pennycook, G., Rothschild, David, Sunstein, Cass,

Thorson, Emily, Watts, Duncan, and Zittrain, Jonathan, 2018. ‘The science of fake

news’. Science, 359(6380):1094–1096.

Lepoutre, Maxime, 2020. ‘Democratic Group Cognition’. Philosophy & Public Affairs,

48(1):40–78.

Loh, Isaac and Phelan, Gregory, 2018. ‘D IMENSIONALITY AND D ISAGREEMENT

: Asymptotic belief divergence in response to common information’. 1–52.

Lord, Charles G., Ross, Lee, and Lepper, Mark R., 1979. ‘Biased assimilation and atti-

tude polarization: The effects of prior theories on subsequently considered evidence’.

43



REFERENCES

Journal of Personality and Social Psychology, 37(11):2098–2109.

Munro, Geoffrey D and Ditto, Peter H, 1997. ‘Biased assimilation, attitude polarization,

and affect in reactions to stereotype-relevant scientific information’. Personality and

Social Psychology Bulletin, 23(6):636–653.

Nguyen, C. Thi, 2018. ‘Escape the echo chamber’. Aeon.

Nickerson, Raymond S., 1998. ‘Confirmation bias: A ubiquitous phenomenon in many

guises.’ Review of General Psychology, 2(2):175–220.

O’Connor, Cailin and Weatherall, James Owen, 2018. ‘Scientific Polarization’. European

Journal for Philosophy of Science, 8(3):855–875.

Pallavicini, Josefine, Hallsson, Bjørn, and Kappel, Klemens, 2018. Polarization in groups

of Bayesian agents. Springer Netherlands.

Pennycook, By Gordon and Rand, David, 2019. ‘Why Do People Fall for Fake News?

Are they blinded by their political passions? Or are they just intellectually lazy?’

Pettigrew, Richard, 2016. ‘Jamesian Epistemology Formalized: An Explication of ‘The

Will to Believe’’. Episteme, 13(3):253–268.

———, 2019. ‘Epistemic Utility Arguments for Probabilism’.

Plous, Scott, 1991. ‘Biases in the assimilation of technological breakdowns: Do accidents

make us safer?’ Journal of Applied Social Psychology, 21(13):1058–1082.

Rabin, Matthew and Schrag, Joel, 1999. ‘First impressions matter: a model of confirm-

atory bias’. Quarterly Journal of Economics, (February):37–82.

Roberts, Craige, 2012. ‘Information structure in discourse: Towards an integrated formal

theory of pragmatics’. Semantics and Pragmatics, 5(6):1–69.

Robson, David, 2018. ‘The myth of the online echo chamber’.

Ryan, Timothy J, 2014. ‘Reconsidering moral issues in politics’. The Journal of Politics,

76(2):380–397.

Salow, Bernhard, 2018. ‘The Externalist’s Guide to Fishing for Compliments’. Mind,

127(507):691–728.

———, 2019. ‘Elusive Externalism’. Mind, 128(510):397–427.

———, 2020. ‘The Value of Evidence’. In Maria Lasonen-Aarnio and Clayton Littlejohn,

eds., The Routledge Handbook for the Philosophy of Evidence. Routledge.

Samet, Dov, 2000. ‘Quantified Beliefs and Believed Quantities’. Journal of Economic

Theory, 95(2):169–185.

Simon, Herbert A., 1956. ‘Rational Choice and the Structure of the Environment’.

Psychological Review, 63(2):129–138.

Simon, Herbert A, 1976. ‘From substantive to procedural rationality’. In 25 years of

economic theory, 65–86. Springer.

Singer, Daniel J, Bramson, Aaron, Grim, Patrick, Holman, Bennett, Jung, Jiin, Kovaka,

Karen, Ranginani, Anika, and Berger, William J, 2019. ‘Rational social and political

polarization’. Philosophical Studies, 176(9):2243–2267.

44



REFERENCES

Stalnaker, Robert, 2019. ‘Rational Reflection, and the Notorious Unmarked Clock’.

In Knowledge and Conditionals: Essays on the Structure of Inquiry, 99–112. Oxford

University Press.

Stone, Daniel F., 2020. ‘Just a Big Misunderstanding? Bias and Bayesian Affective

Polarization’. International Economic Review, 61(1):189–217.

Taber, Charles S and Lodge, Milton, 2006. ‘Motivated Skepticism in the Evaluation of

Political Beliefs’. American Journal of Political Science, 50(3):755–769.

Titelbaum, Michael G., 2010. ‘Tell me you love me: Bootstrapping, externalism, and

no-lose epistemology’. Philosophical Studies, 149(1):119–134.

van Benthem, Johan, 2011. Logical Dynamics of Information and Interaction. Cam-

bridge University Press.

van Ditmarsch, Hans, Halpern, Joseph Y, van der Hoek, Wiebe, and Kooi, Barteld,

2015. Handbook of Epistemic Logic. College Publications.

Van Heuvelen, Ben, 2007. ‘The Internet is Making us Stupid’. Salon.

Weatherall, James Owen and O’Connor, Cailin, 2020. ‘Endogenous epistemic factional-

ization’. Synthese, 1–23.

Weisberg, Jonathan, 2007. ‘Conditionalization, reflection, and self-knowledge’. Philo-

sophical Studies, 135(2):179–197.

———, 2017. ‘Formal Epistemology’.

White, Roger, 2006. ‘Problems for Dogmatism’. Philosophical Studies, 131:525–557.

Whittlestone, Jess, 2017. ‘The importance of making assumptions : why confirmation

is not necessarily a bias’. (July).

Williamson, Timothy, 2000. Knowledge and its Limits. Oxford University Press.

———, 2008. ‘Why Epistemology Cannot be Operationalized’. In Quentin Smith, ed.,

Epistemology: New Essays, 277–300. Oxford University Press.

———, 2014. ‘Very Improbable Knowing’. Erkenntnis, 79(5):971–999.

———, 2019. ‘Evidence of Evidence in Epistemic Logic’. In Mattias Skipper and

Asbjørn Steglich-Petersen, eds., Higher-Order Evidence: New Essays, 265–297. Ox-

ford University Press.

45


	Introduction
	How to Polarize Rational People
	How We Polarized
	What is Rational Polarization?
	Ambiguous evidence and predictable polarization
	Rationality as Value

	Profound, Persistent and Predictable Polarization
	Models of the word-completion task
	Profound and Persistent Polarization

	Confirmation Bias as Avoiding Ambiguity
	Rational Confirmation Bias
	Cognitive Search Models and Simulations

	Why Arguments Polarize Us
	Formal model of arguments
	Simulations of arguments


