:

Introduction

ARE WE SMART?

Against stupidity the gods themselves contend in vain.

—FRIEDRICH SCHILLER

This book is motivated by a fundamental puzzle about human cognition:
How can we apparently be so stupid and so smart at the same time? On the
one hand, the catalog of human error is vast: we perceive things that aren’t
there and fail to perceive things right in front of us, we forget things that hap-
pened and remember things that didn’t, we say things we don’t mean and
mean things we don't say, we're inconsistent, biased, myopic, overly opti-
mistic, and—despite this litany of imperfections—overconfident. In short,
we appear to be as far as one can imagine from an ideal of rationality."

On the other hand, there is an equally vast catalog of findings in support of
human rationality: we come close to optimal performance in domains ranging
from motor control and sensory perception to prediction, communication,
decision making, and logical reasoning.” Even more puzzlingly, sometimes
the very same phenomena appear to provide evidence both for and against
rationality, depending on the theoretical lens through which the phenomena
are studied.

This puzzle has been around for as long as people have contemplated the
nature of human intelligence. It was aptly summarized by Richard Nisbett and
Lee Ross in the opening passage of their classic book on social psychology:

One of philosophy’s oldest paradoxes is the apparent contradiction
between the great triumphs and the dramatic failures of the human mind.
The same organism that routinely solves inferential problems toc.) sub-
tle and complex for the mightiest computers often makes errors in the
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Statlstl(':a. algVersuS Statistical Prediction, in which he argued (to the disbelief
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;istslswere typically less accurate than the outPUtS' of statistical algorithpp
This conclusion was reinforced by subsequent studies anc-I expanded to othey
Jomains.* For example, in his 2003 book Moneyball, Michael Lewis popu-
larized the story of the baseball manager Billy Beane, who showed (to the
disbelief of his managerial colleagues) that statistical analysis could be useq
to predict player performance better than the subjective judgments of man-
agers.’ Today, the idea that computers can outperform humans, even on tagks
previously thought to require human expertise, has become mundane, with
stunning victories in Go, poker, chess, and_]eopardy.6

And yet, despite these successes, computers still struggle to emulate the
scope and flexibility of human cognition.7 After the Go master Lee Sedol
was defeated by the AlphaGo computer program, he could get up, talk to
reporters, go home, read a book, make dinner, and carry out the countless
other daily activities that we do not even register as intelligence. AlphaGo,
on the other hand, simply turned off, its job complete. Even in the domains
for which machine learning algorithms have been specifically optimized, triv-
ial variations in appearance (e.g, altering the colors and shapes of objects)
or slight modifications in the rules will have catastrophic effects on perfor-
mance. What seems to be missing is some form of “common sense”—the set of
background beliefs and inferential abilities that allow humans to adapt, almost
effortlessly, to an endless variety of problems.

The lack of common sense in modern artificial intelligence (AI) systems
is vivid in the domain of natural language processing. Consider the sentence
‘I saw the Grand Canyon flying to New York”® When asked to translate
into German, Google Translate returns “Ich sah den Grand Canyon nach
New Y.ork fliegen,” which implies that it is the Grand Canyon that is doing
the flying, in defiance of common sense. In fact, the problem of common-
sense knowledge was raised at the dawn of machine translation by the linguist
.Ye%loshua Bal:g-ml el, who contrasted “The pen is in the box” with “The box
:0‘:}‘! .the pen. (ioogle Translate returns Stift (the writing implement) for

Instances of “pen,” despite its obvious incorrectness in the latter instance:

As indicated by Nisbett an
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!‘11856166;er 1retﬂect the fact that modern machine translation systems like
I00E nslate are based almost entirely on statistical regularities extracted

from parallel text corpora (i.e., texts that have already been translated into

nmh'llile 1anguag};es). Because the writing implement usage of “pen” is vastly
1“0-1‘-; common t 31.1 the container usage, these systems will fail to appreciate
subtle contextual differences that are transparent to humans.

Similar issues arise when computers are asked to answer questions based

on naﬁural language. The computer scientist Terry Winograd presented the
following two sentences that differ by a single word: 1

1. The city councilmen refused the demonstrators a permit because they
feared violence.

2. The city councilmen refused the demonstrators a permit because they
advocated violence.

Who does “they” refer to? Humans intuitively understand that “they” refers
to the councilmen in sentence 1 and the demonstrators in sentence 2. Clearly
we are using background knowledge about councilmen, demonstrators, per-
mits, and violence to answer this simple question. But building Al systems
that can flexibly represent and use such knowledge has proven to be extremely
challenging.

Asa final example, consider the abilities of a modern image-captioning sys-
tem.'> When given the image in Figure 11, it returns the caption, “I think it’s
aperson holding a cup.” Apparently, the system has implicitly used a heuristic
that if it sees a cup and a person in the image, then the image probably shows
a person holding a cup. But now consider the image in Figure 1.2, which the
same system identifies as “a man holding a laptop.” Although the cup is heavily
occluded, humans have no trouble recognizing that the person on the left is
holding one. And of course the “laptop” is a piece of paper!'?

The lesson from this cursory examination of Al systems is that it is much
easier to engineer systems that achieve superhuman performance on specific
tasks like Go than it is to engineer systems with human-like common sense.
This tells us something very important about the nature of human intelli-
gence: our brains are evolved for “breadth” rather than “depth.” We excel at
flexibly solving many different problems approximately rather than solving
a small number of specific problems precisely. Common sense enables us to
make sophisticated inferences on the basis of the most meager data—single
sentences or images. And the fact that this ability appears to us so effortless—
the very fact that common sense is “common” to the point of bel‘ng al.most
invisible—suggests that our brains are optimized for fast, subconscious infer-

ence and decision making.
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FIGURE 1.1. Image of the author holding a notebook in
a restaurant. The image-captioning system believes the

image shows “a person holding a cup.”

FIGURE 1.2. Image of the author’s brother and father. The
image-captioning system believes the image shows “a man
holding a laptop.”

These features of human cognition are shaped by the constraints of the
environment in which we live and the biological constraints imposed on
our brains, The complexity of our society and technology places a premium
on ﬂexibility and scope, We constantly meet new people, visit new places,
encounter peyw objects, and hear new sentences. We are able to generalize
broadl)' from a limiteq set of experiences with these entities. We have to do
all of thits with extremely limited energy and memory resources (comparefi to
:}?:s\;egzlonal computers), and under extreme time constraints. T0 nego;;;j
= mands, our brajng make trade-offs and take aggressive ShOf"tClltS- 5

$€ to errors, but thege errors are not haphazard “hacks” or “kluges
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One migbt rightfully be concerned that the outcome of this endeavor will
be a collection of “just-so” stories—ad h

tive oddities.'® Like Dr. Pangloss in Volt
could start from the assumption that “this is the best of all possible worlds”
and, given enough explanatory flexibility,

! : explain why all these oddities spring
from “the best of all possible minds’” However, the goal of this book is not to
argue for optimality per se,

: but rather to show how thinking about optimal-
ity can guide us towards a small set of unifying principles for understanding
both the successes and failures of cognition. Unlike just-so stories, we will
not have bespoke explanations for individual phenomena; the project will be
judged successful if the same principles can be invoked to explain diverse and
superficially distinct phenomena.

I will argue that there are two fundamental principles governing the orga-
nization of human intelligence. The first is inductive bias: any system (natural
or artificial) that makes inferences on the basis of limited data must constrain
its hypotheses in some way before observing data. For those of you encoun-
tering this idea for the first time, it may seem highly unintuitive. Why would
we want to constrain our hypotheses before observing data? If the data don’t
conform to these constraints, won’t we be shooting ourselves in the foot? The
answer, as I elaborate in the next chapter, is that if all hypotheses are allow-
able, a huge (possibly infinite) number of hypotheses will be consistent with
any given pattern of data. The more agnostic an inferential system is (i.e., the
weaker its inductive biases), the more uncertain it will be about the correct
hypothesis. Naturally, this gives rise to errors when the inductive biases are
wrong. Chapters 2 through ¢ are devoted to exploring the implications of this
fact, showing the ways in which many different errors that people make are
consistent with particular inductive biases. Critically, these are only errors
with respect to an objective description of reality, to which people do not have
direct access.'® From the subjective perspective of an inferential system, the
use of inductive biases is not an error at all—it is an indispensable property
of a rationally designed inferential system. ;

The second principle is Wi any system (natural or :ﬁftl‘\
ficial) that makes inferences and decisions with li'mited resources (tlnh‘le,
memory, energy) must make approximations. In particular, optimal inductive
inference and planning are intractable for mc?st resource-bounded systems:
executing the computations needed to obteu.n the correct answer rec};’x}ires
more time, memory, and energy than is available to these systems. Thus,

oc justifications of various cogni-
aire’s satirical novella Candide, we
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approximate algorithms are necessary which attain efficiency at the cost of
precision. These approximate algorithms give rise to different forms of error,
which I explore in Chapters 10 through 12. For example, I show how the
need to represent information efficiently leads to distortions in perception,
and how the need to calculate probabilities efficiently leads to algorithms
that exploit randomness. Again, these are errors with respect to an objec-
tive description of reality, whereas they may be optimal from the subjective
perspective of the computational system.




