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Abstract
Psychological studies show that the beliefs of two agents in a hypothesis can diverge
even if both agents receive the same evidence. This phenomenon of belief polarisation
is often explained by invoking biased assimilation of evidence, where the agents’ prior
views about the hypothesis affect the way they process the evidence.We suggest, using
a Bayesian model, that even if such influence is excluded, belief polarisation can still
arise by another mechanism. This alternative mechanism involves differential weight-
ing of the evidence arising when agents have different initial views about the reliability
of their sources of evidence. We provide a systematic exploration of the conditions
for belief polarisation in Bayesian models which incorporate opinions about source
reliability, and we discuss some implications of our findings for the psychological
literature.

Keywords Belief polarisation · Reliability · Evidence · Bayesian model

1 Introduction

Suppose two people, call them Alice and Bob, are members of a jury that has been
appointed in order to decide on whether the defendant in a murder case is guilty. They
must assess the hypothesis that the defendant is guilty. During the trial Alice and Bob
are confrontedwith a number of pieces of evidencewhich tell either in favour or against
this hypothesis. For example, they see a police report that a weapon such as was used
in the murder was found in the defendant’s house. This constitutes positive evidence
for the hypothesis that the defendant is guilty. They also see forensic evidence which
shows that the DNA traces left on the body do not match the DNA of the defendant.
This is negative evidence which tells against the defendant’s guilt. Suppose that Alice
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starts out more confident than Bob that the defendant is guilty, and after seeing the
evidence, Alice becomes even more confident that the defendant is guilty, and Bob
becomes even less sure that he is. This is a case of ‘belief polarisation’. In belief
polarisation, two individuals respond to the same evidence, but the result is not greater
agreement, but more divergence in opinion.

There are experiments in psychology which arguably show that belief polarisation
does occur. In some cases, belief polarisation has been seen on a single piece of
evidence (Batson 1975; Cook and Lewandowsky 2016), but in a number of cases the
evidence is of a mixed character (Lord et al. 1979; Plous 1991). That is, part of the
evidence supports the hypothesis in question, whereas part goes against it. In the most-
cited study of this kind, people with differing prior views about the effectiveness of
the death penalty as a crime deterrent were asked to read two fictional studies, one of
which supported the idea that the death penalty is an effective crime deterrent, and the
other which supported the idea that it is not (Lord et al. 1979). The study purported
to show belief polarisation of the participants, though the experimental methodology
has been subjected to later critique (Miller et al. 1993; Kuhn and Lao 1996).

In the psychological literature, polarisation has often been taken to arise as a result
of some form of ‘biased assimilation’ of the evidence. This means that the way the
evidence is taken up or processed is biased in some fashion by the prior views of
the subject. However, in order to be precise about the notion of ‘bias’, it needs to be
contrasted with some normative understanding of what would be an unbiased way to
assimilate evidence. Clearly it is notwrong for prior opinions to play some role in belief
updating. The question is whether they are, in cases of belief polarisation, playing too
much of a role, or playing the wrong kind of role. In order to gain a notion of what
‘unbiased’ could mean, we can turn to normative models provided by Bayesianism. In
Bayesian updating, prior opinion is combined with evidential information in a manner
which is well-motivated by various normative arguments. Deviation from Bayesian
updating may then potentially indicate that the agent has assimilated the evidence in
a manner which has given too much weight to their prior beliefs.

An interesting question that then arises is whether belief polarisation actually has
to be attributed to biased assimilation, or whether it can occur given the normatively
correctmethodof updating specifiedbyBayesianism. Jern et al. (2014) have shown that
belief polarisation can occur when two agents with different prior beliefs not just about
the hypothesis in question but also about other factors update on the same evidence
according to Bayesian conditionalisation. This suggests that belief polarisation should
not necessarily be attributed to biased assimilation on the part of one or more of the
parties involved. However, it raises the question of whether a more specific kind of
explanation of belief polarisationmight be possible, if we restrict attention to particular
kinds of other factors which are involved in belief updating.

A plausible candidate for amore specific kind of explanation emergeswhenwe con-
sider the ‘group polarisation’ we see in society on a number of important topics. Group
polarisation occurs when the beliefs held by members of subgroups in society diverge
from those of other subgroups, despite exposure to the same evidence. For example,
on a number of scientific issues, notably anthropogenic climate change, public opinion
is sharply divided in the presence of shared evidence which is not disputed by experts.
Also within the scientific community, different groups may respond to the same evi-
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dence in ways that lead to more extreme positions (Kahan et al. 2011; O’Connor and
Weatherall 2017). It is often striking that when a group polarises, individuals diverge
not only in their attitudes towards specific propositions, but also on their views regard-
ing the reliability of sources of information. We see, for example, those who hold
certain opinions about climate change also tending to trust different news sources. It
is natural to expect that agents have beliefs not only about specific hypotheses about
which they may disagree, but also about the reliability of their sources of information.
This prompts the question that we will address in this paper: could it be the case that
belief polarisation can result from normal Bayesian updating of both attitudes about
hypotheses and attitudes about reliabilities?

In order to explore this question, we examine simple Bayesian models which repre-
sent proper, non-biased assimilation of evidence and how it impacts our probabilities
for hypotheses and for reliability of sources. We call these ‘source reliability models’.
These models are also found in the work of Bovens and Hartmann (2003),1 where
they have been extensively studied in relation to how they behave when the evidence
from multiple sources agrees. We will focus rather on the cases where the evidence is
mixed, as it is in the Lord et al. (1979) study of belief polarisation. Some of the key
results are the following. We show that polarisation can arise in these models, under
certain circumstances. This means that belief polarisation can under these conditions
in principle be produced by normal Bayesian updating on hypotheses and reliabilities,
without any biased assimilation of evidence occuring. We find, however, that belief
polarisation cannot arise simply because of a difference in pre-existing attitude about
a hypothesis unless it is accompanied by different expectations regarding the relia-
bility of the sources. On the other hand, a difference in prior expectations about the
reliability of sources is sufficient to produce polarisation, even without any difference
in initial attitude towards the hypothesis in question.

Before getting to themain results, wewill first, in Sects. 2 and 3, explain what belief
polarisation looks like in a Bayesian context, and then introduce source reliability
models. Section 4 contains the main results. In Sect. 5, we discuss the implications of
these findings in relation to the existing literature on belief polarisation.

2 Belief polarisation in a Bayesian context

What does belief polarisation mean in a Bayesian context? In a Bayesian framework,
an agent’s degrees of belief are represented by probability distributions over random
variables.2 In the jury example, suppose the probability distributions for Alice and
Bob are pA(·) and pB(·) respectively, where the probabilities may in each case be
defined over a number of random variables. For example one of the random variables,
H , could represent the hypothesis that the accused is guilty. This variable can then
take two values: H meaning the accused is guilty, and ¬H meaning the accused is
not guilty. Throughout this paper we will follow this convention, denoting random
variables by italics, and the values of the variables in non-italic font. We may then

1 See also (Merdes et al. 2020).
2 Or probability densities in the case of hypotheses concerning continuous random variables.
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Fig. 1 Different possibilities for two agents A and B to update their beliefs in a hypothesis H after collecting
evidence: (a) parallel updating, (b) convergent updating, and (c) divergent updating. While both (b) and (c)
are subspecies of contrary updating, only (c) constitutes a case of belief polarisation

consider receiving the value of an evidence variable E , such as a report of DNA testing.
If this evidence variable also has two possible values, we will denote these as E and
¬E. Given the evidence, each of Alice and Bob update their prior probability for H
to a posterior for H. Alice updates her prior pA(H) to the posterior pA(H|E), and
Bob updates his prior pB(H) to pB(H|E). We denote the difference between Alice’s
posterior probability and her prior probability for H by �H

A = pA(H|E)− pA(H) and
the difference between Bob’s posterior probability and his prior probability for H by
�H

B = pB(H|E) − pB(H).
In some cases, Alice and Bob’s probabilities both move in the same direction—that

is, �H
A and �H

B have the same sign. Following Jern et al. (2014), we call this parallel
updating. In this case, Alice and Bob either both increase their probabilities (see Fig.
1a), or they both decrease their probabilities, in the light of the evidence. Another
possibility is contrary updating, where Alice and Bob update their probabilities in
different directions. Alice may revise her probability to a lower value (�H

A < 0),
whilst Bob revises his to a higher value (�H

B > 0), or vice versa. Contrary updating
may be either convergent, where the beliefs of the two agents about the defendant’s
guilt come closer together as a result of the updating, or divergent, where the beliefs
of the two agents move apart from one another. Convergent updating happens, for
example, when Alice starts with a higher prior and revises her probability down after
updating (�H

A < 0), whilst Bob starts with a lower prior and revises his probability
upwards (�H

B > 0) (see Fig. 1b). Divergent updating can happen when, for example,
Alice starts with a higher prior and revises her probability upwards (�H

A > 0), whilst
Bob starts with a lower prior and revises his probability downwards (�H

B < 0) (see
Fig. 1c). Belief polarisation then can be thought of as divergent contrary updating.

A criterion for belief polarisation can be found in terms of likelihood ratios. The
posterior probability for a hypothesis H given evidence E can be written as

p(H|E) = h

h + h l

where l = p(E |¬H)
p(E |H)

is the likelihood ratio. For convenience we use the notation h to

represent the prior p(H), and h denotes 1 − h. It can be seen from this expression
that the likelihood ratio tells us the direction of the belief update. If the likelihood
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ratio is greater than one, the posterior probability is lower than the prior, so the agent’s
probability for H goes down (�H < 0). On the other hand, if the likelihood ratio is
less than one, the agent’s probability for H goes up (�H > 0). If the likelihood ratio is
exactly one, the prior probability and the posterior probability are equal and there is no
change (�H = 0). Thus, the condition for contrary updating is that Alice’s likelihood
ratio for H is greater than one, and Bob’s is less than one (or vice versa). Let the prior
for Alice on H be denoted by hA, and the likelihood ratio for Alice on H be denoted
by lA, with similar notation for Bob. Then, divergent contrary updating, or belief
polarisation, happens when Alice starts with a lower prior, and revises downwards
(�H

A < 0, likelihood ratio greater than one), whilst Bob starts with a higher prior and
revises upwards (�H

B > 0, likelihood ratio less than one), or vice versa, switching
roles for Alice and Bob. That is, belief polarisation occurs either when

lB < 1 < lA and hA ≤ hB

or when

lA < 1 < lB and hB ≤ hA

(Jern et al. 2014; Nielsen and Stewart 2019).
This is a general criterion which applies not only when E and H are the only

variables under consideration, but also in the more typical situation where the agents
have probabilistic opinions about other variables as well. In that case, the likelihoods
for H would be determined in the usual way by marginalising out over the additional
variables. As a simple example, if pA(·) and pB(·) are probability distributions con-
cerning the variables E , H , and an additional variable V , then the likelihood for H
would be calculated as p(E |H) = ∑

V p(E |H , V ) p(V ). In realistic situations, peo-
ple may have opinions about many variables. In cases where two parties have very
different views about the relationships between other variables, it is not difficult to
find situations where their opinions on a particular hypothesis may diverge from one
another given the same evidence (an example is given in Jern et al. (2014) on p. 209).
However, in many situations, the parties involved do not have completely divergent
world-views, but rather have the same basic understanding of how the basic elements
of the situation connect with one another. In such cases, one can ask whether it is still
possible to have belief polarisation due to more limited divergences in prior belief
between the two parties. Thus, in order to formulate precisely the question of when
interesting belief polarisation can take place, we need a more precise characterisation
of what should count as common ground between the agents, and where their prior
opinions may differ.

Jern et al. (2014) suggest a way in which to spell out what it means for two agents
to agree on the basic structure of a situation. This can be done in terms of Bayesian
network models. It is well-known that joint probability distributions p(·) can be con-
veniently represented using Bayesian network models. A Bayesian network model
consists of two elements: a graph and a parametrisation of that graph. In the graph, all
the variables are represented by nodes. Some of the nodes are connected by arrows.
Intuitively, an arrow from X to Y can be thought of as indicating that the variable X has
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(a) (b)

Fig. 2 Simple Bayesian network model and two different example conditional probability tables. In the
first column, a zero corresponds to H taking the value ¬H (i.e., H is not true), and a one corresponds to H
taking the value H (i.e., H is true)

a direct influence on the variable Y . If there is an arrow from X to Y , X is called a ‘par-
ent’ of Y , and Y is called a ‘child’ of X . The graph must be ‘acyclic’, meaning that it is
not possible to go in a cycle by following arrows. Thus, it is called a ‘directed acyclic
graph’ (or ‘DAG’). The DAG represents the probabilistic independencies between the
variables in the joint probability distribution, given a specific precise condition.3 How-
ever, there may be multiple probability distributions over the whole set of variables
with the same set of independencies. Thus possession of a particular graph structure
does not uniquely correspond to a given probability distribution. To fully specify a
particular probability distribution, we add ‘parameters’ to the graph. These parameters
specify conditional probability tables for all the nodes, given their parents. We also
specify prior probabilities for the ‘root’ nodes, that is, those nodes with no parents.

The basic idea in Jern et al. (2014) is to say that two agents agree on the basic
structure of a situation when they agree on the relevant variables in question, as well
as on the Bayesian network structure and on the conditional probability tables that
specify the relationships between the variables. The agents may still differ, however,
in their prior beliefs regarding the values of the root nodes in the Bayesian network.
In this paper, we follow Jern et al. in making these assumptions about the common
ground that our agents share, and when we talk about whether belief polarisation is
possible, it is under these conditions.

Suppose, as a simple example, the only variables included in the model are E and
H , and the agents agree that the appropriate Bayesian network is the one depicted in
Fig. 2. Roughly this encodes the idea that the truth of the hypothesis affects the truth of
the evidence, but not the other way around. In this simple case, this can be thought of
simply as part of what it means for E to serve as evidence for H . We also assume that
the two agents Alice and Bob agree on the conditional probability table (a) shown in

3 The precise condition is the ‘Markov condition’. More formally, a DAG is a graph 〈V,E〉, whereV is a set
of random variables Vi and E is an asymmetric binary relation onV. We graphically represent 〈Vi , Vj 〉 ∈ E
as Vi −→ Vj . Vi , Vj ∈ V are called adjacent if either Vi −→ Vj or Vj −→ Vi . If each node Vi (with
i > 1) in a tuple 〈V1, ..., Vn〉 is adjacent to Vi−1 and no Vi (with 1 < i < n) appears more often than
once in 〈V1, ..., Vn〉, then 〈V1, ..., Vn〉 is called a path between V1 and Vn . A directed path from Vi to Vj
is a path which takes the form Vi −→ ... −→ Vj . DAGs are acyclic, meaning that they do not feature
a directed path Vi −→ ... −→ Vi . The set of a variable Vj ’s direct ancestors in the graph, i.e., the set
of all Vi with Vi −→ Vj , is denoted by Par(Vj ). Its elements are referred to as Vj ’s parents. The set of
descendants of a variable Vj contains Vj itself as well as any node Vk such that there is a directed path from
Vj to Vk . We denote the set of descendants of Vj by Des(Vj ). Then theMarkov condition is satisfied by a
DAG 〈V,E〉 and a probability distribution p(·) over V iff every node in V is probabilistically independent
of its non-descendants conditional on its parents, i.e., every node Vj ∈ V is independent of V\Des(Vj )

conditional on Par(Vj ). The Markov condition can also be interpreted as a principle characterising causal
structures (Spirtes et al. 1993; Pearl 2000). For a philosophical justification of its causal interpretation, see
(Gebharter 2017b; Schurz and Gebharter 2016). For other realistic interpretations see, for example, Schaffer
2016; Gebharter 2017a, c, 2019. In this paper, however, we refrain from any such realistic interpretation.
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Fig. 2. However, they may have different priors: pA(H) may be different from pB(H).
Since the likelihood ratio for H depends on p(E |H) and p(E |¬H), Alice and Bob
have the same likelihood ratio as one another, and thus they agree on the direction
of the update given evidence E. This means that contrary updating and particularly
belief polarisation can never occur in such a model under the assumptions we are
making. A simple case which would fit this structure is one where H is a variable
representing whether or not a patient has a disease, and E is a variable with two values
corresponding to a positive or negative test result. The conditional probability table in
Fig. 2a encodes the understanding that when the disease is present, it is more likely
that the patient will present a positive test result than if the disease is not present.

Notice here that if the agents disagree about the conditional probability table, for
example if Alice takes it to be the table in Fig. 2a and Bob takes it to be the table in
Fig. 2b, then this would express a very different understanding of the significance of
the test. Alice takes a positive test result as evidence that the patient has the disease,
whereas Bob thinks the test is now more likely to give a positive result if the disease
is not present than if it is. Alice will increase her probability that the patient has the
disease when she sees a positive test result (Alice’s likelihood ratio is then less than
one), whereas Bob decreases his probability that the patient has the disease when
he sees a positive test result (his likelihood ratio is greater than one). This kind of
fundamental disagreement over the conditional probability table is ruled out by our
assumptions.

When the model includes three or more variables, whether or not belief polarisation
can occur depends on the structure of the Bayesian network. Some graph structures
never allow it, whereas some do, under certain parameter settings. Jern et al. (2014)
provide a complete classification of all the three-variable networks in terms of whether
they allow for belief polarisation or not. As a simple example, suppose the structure
is that depicted in Fig. 3a. In this case, the likelihood ratio for H is l = p(E|H)

p(E|¬H)
=

∑
V p(E|V) p(V |H)∑
V p(E|V) p(V |¬H)

, which does not depend on the prior for H. Since H is the only root
node, agents will always agree on the likelihood ratio, and so there can be no belief
polarisation on H .

On the other hand, one of the structures which does allow for belief polarisation
under certain conditions is Fig. 3b. In this case, the likelihood ratio is l = p(E|H)

p(E|¬H)
=

∑
V p(E|V ,H) p(V)∑
V p(E|V ,¬H) p(V)

. It is noteworthy that this likelihood ratio does not depend on the

prior for the hypothesis p(H), but does depend on the prior for the additional variable
p(V ). The somewhat counterintuitive fact that the likelihood ratio depends on the prior
for V but not for H will also be an important feature of the model we will present in
Sect. 3. Belief polarisation, then, is possible for some cases where Alice and Bob have
different priors for V . Suppose, for example, that H represents whether the patient
has a disease, and E is a test result as before. However, now there is a further variable
which can influence the test result, namely the patient’s blood sugar level, which we
represent by the variable V (see Jern et al. (2014), pp. 208f). We assume that V ,
like H and E , is a binary variable: the patient’s blood sugar level can be either high
(V) or low (¬V), for example. Now let us suppose that a positive test result is more
probable when the patient has the disease and has a high blood sugar level, but it is
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(a) (b)

(c)

Fig. 3 a A structure involving the three variables H , E, V which does not allow for belief polarisation; b a
structure of the three variables which does allow belief polarisation for certain parameter settings, such as
those shown in the table (c)

also quite likely when the patient does not have the disease but has a low blood sugar
level. Now suppose doctor Alice is fairly confident that the patient has the disease
and also thinks that the patient has a high blood sugar level, then she becomes even
more convinced that the patient has the disease when she sees a positive test result.
If, on the other hand, doctor Bob is doubtful whether the patient has the disease, and
also is inclined to think that the patient has a low blood sugar level, then he may
become more convinced that the patient does not have the disease, given a positive
test result. This situation could happen for example when the parameters are chosen
as in the probability table shown in Fig. 3c. In this case, Alice’s probability for H
increases from her prior probability 0.8 to a posterior probability of 0.88, whilst Bob’s
probability for H decreases from his prior probability of 0.2 to a posterior probability
of 0.08. Thus we see belief polarisation.

In summary then, belief polarisation inBayesianmodels canbe identifiedby looking
at the likelihood ratios of each of the parties involved for a particular hypothesis. In
general, these likelihood ratios depend on all the other opinions that the agent holds and
which can be represented in a Bayesian network. There are some network structures
which allow for belief polarisation, even in cases where the agents agree on the basic
structure of the network. In these cases, the polarisation arises because of a difference
in prior probabilities assigned to the root nodes of the network.

3 Source reliability models

In this paper, we are interested in the role of source reliability in belief polarisation.We
therefore consider a special class of Bayesian network models, namely those which
explicitly include nodes for not only hypotheses of interest, but also for the reliability
of sources of evidence bearing on those hypotheses. In such amodel, an agent is updat-
ing a joint assignment of degrees of belief for both hypotheses and source reliabilities.
Several different Bayesian models of source reliability have been developed in the
literature (Olsson 2013; Bovens and Hartmann 2003; Merdes et al. 2020). We focus
here on the type of model presented by Bovens and Hartmann (2003). Bovens and
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Fig. 4 Simple source reliability
model

Hartmann have explored a number of properties of these models, including the condi-
tions for when agreement betweenmultiple pieces of evidence boosts confirmation for
a hypothesis. What we will do here is to examine the effects of mixed evidence, where
different pieces of evidence give differing indications about whether the hypothesis
in question is true. These cases are of interest, since as we have seen, psychological
experiments show that belief polarisation can occur in situations where the evidence
is mixed. The question then is whether belief polarisation can arise in simple Bayesian
source reliability models, and if so, under what conditions.

Aswehave seen, oneof themost basicmodels of evidence-collecting is that depicted
in Fig. 2. Here it is assumed that whether or not the hypothesis is true has bearing on
whether or not certain evidence will be present. A source reliability model is a simple
extension of this model, which takes the evidence to come in the form of a report from
a source which has some reliability represented by a variable R. The basic structure
is depicted in Fig. 4. A basic assumption of this model is that two factors influence
what evidence reports are received—first, the truth or falsity of the hypothesis itself,
and second, the reliability of the source of the report. By using this structure, we
make two further assumptions: (i) the hypothesis H is independent of the reliability
of the source R, and (ii) H and R are dependent when conditioned on the evidence E .
Assumption (i) makes sense when the truth of the hypothesis does not influence the
reliability of the source, nor does the reliability of the source influence the truth of the
hypothesis. In our legal case introduced earlier, for instance, it is clear that whether or
not the police report or the forensic report are reliable has no bearing on whether the
defendant committed the crime. And also, whether or not the defendant committed
the crime has no influence on the reliability of the reports. The reliability of the police
report is determined by factors such as the integrity and disinterestedness of the police,
for which it should be irrelevant whether or not the defendant committed the crime.
Similarly, the reliability of the DNA test depends on the precise nature of the test that
is carried out and what its false positive and false negative rates are. Again, the guilt
of the defendant should have no influence on this. The independence assumption (i)
means that the prior probabilities for H and R should be assignable independently of
each other. The model thus does not allow the possibility of biased influence of prior
opinion, in the sense that it does not allow the agent’s prior views of R to depend on
her prior views of H, or vice versa. Assumption (ii) is also a natural one. Suppose, for
example, the evidence comes from an eyewitness. As soon as the agent is presented
with evidence (E or ¬E), H and R should become relevant to each other. If Alice, for
example, considers a particular witness highly reliable, then she will assign a higher
probability to H after hearing this witness report E than shewould had she not assigned
such a high degree of reliability to this particular witness. And, vice versa, had Alice,
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Fig. 5 Source reliability model
with n pieces of evidence from n
independent sources and
conditional probability table

for example, already assigned a high prior to H, then she should consider a witness
less reliable after hearing the witness claim ¬E.

So far, we have only considered one evidence variable, but the agent may actually
receive multiple pieces of evidence, which we represent by variables E1, E2, ..., En .
If each of these pieces of evidence comes from an independent source, the structure
of the Bayesian network is as depicted in Fig. 5. Each source has a reliability Ri for
1 ≤ i ≤ n. Following Bovens and Hartmann (2003), we make the following further
assumptions about the conditional probabilities in the source reliability models. We
take H , Ei , and Ri to be all binary variables. When the source is reliable (Ri = 1,
which we denote Ri ), the evidence that it produces perfectly discriminates between the
truth and falsity of the hypothesis. That is, p(Ei |H,Ri ) = 1 and p(Ei |¬H,Ri ) = 0.On
the other hand, when the source is unreliable (Ri = 0, denoted ¬Ri ), it is indifferent
to the truth or falsity of the hypothesis, and merely acts like a randomiser, giving a
probability of positive evidence ai regardless of whether the hypothesis is true or false.
That is p(Ei |H,¬Ri ) = p(Ei |¬H,¬Ri ) = ai . We assume for simplicity that when
each source is unreliable, it has the same randomisation parameter a, or chance of
giving an incorrect report (i.e., we assume that p(Ei |H,¬Ri ) = p(E j |H,¬R j ) = a
for all i, j with 1 ≤ i, j ≤ n). The conditional probability table for each evidence
node is thus specified as in the table in Fig. 5. As before, we will use the following
notation for the priors: h will denote p(H), ρi will denote p(Ri ). We write h for
p(¬H) = 1 − h, and similarly ρi denotes p(¬Ri ) = 1 − ρi .

4 Results

In this section we present our findings regarding the source reliability models shown in
Figs. 4 and 5. We find that belief polarisation is not possible on the hypothesis in such
models given only one piece of evidence. However, given multiple pieces of evidence,
belief polarisation can arise due to differential weighting of the evidence produced by
differences in the priors on reliability of the sources of evidence.

4.1 Simplemodel with one piece of evidence

4.1.1 Updating probability for hypothesis

First, let us consider a simple model where there is just one piece of evidence E (see
Fig. 4). In this case, there is no polarisation on H. This can be seen by considering the
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likelihood ratio for H, given a positive report E, which can be computed as:

l+ = p(E|¬H)

p(E|H)

=
∑

R p(E|¬H, R) p(R)
∑

R p(E|H, R) p(R)

= a ρ

a ρ + ρ

= 1

1 + ρ
a ρ

(1)

It is clear that this expression is always less than one, since ρ
a ρ

is positive. This means
that the posterior probability for H always increases, given a piece of positive evidence
E. Furthermore, we can see that the size of the update is governed by ρ

a ρ
for a fixed h.

�H is greater when ρ is larger and/or when a is smaller. When ρ is larger, the agent
has initially more trust in the reliability of the source, and thus is more responsive
to what it says. The update is also larger when a is small, because this means that
the chance that the positive report arises because the source is actually unreliable but
erroneously gives a positive report is small.

Similar calculations show that when the evidence is negative ¬E, the likelihood
ratio for H is:

l− = a ρ + ρ

a ρ

= 1 + ρ

a ρ
(2)

Since ρ
a ρ

is positive, this is always greater than one. This means that the posterior
probability for H always decreases, given a piece of negative evidence ¬E. Further-
more, the size of the update �H for a given h is larger when the source is initially
more trusted (high ρ). The update is also larger when a is large, because this means
that the chance that the negative report arises because the source is actually unreliable
but erroneously gives a negative report is small.

No matter what priors Alice and Bob start with then, either they both update to a
higher posterior probability (�H

A > 0 and �H
B > 0), when the piece of evidence is

positive, or they both update to a lower posterior (�H
A < 0 and �H

B < 0) when the
piece of evidence is negative. Thus, there can be no belief polarisation with respect to
the hypothesis given a single piece of evidence.

Since the likelihood ratio for H does not depend at all on the prior h for the hypoth-
esis, the prior h has no effect on the direction of the update. If Alice and Bob have
different priors for H, they will still update in exactly the same direction regardless
of whether they have different priors for the reliability of the source, though the size
of their update �H depends on their individual priors hA and hB as well as on how
reliable they consider the source to be.
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Fig. 6 Each agent has a prior h
and a prior ρ. All possible
choices of priors are displayed
on the h − ρ plane. The
directions of updates are shown,
given one piece of positive
evidence E. In the region where
h < a, �R < 0. In the region
where h > a, on the other hand,
�R > 0. Belief polarisation for
reliability can happen when, for
example, Alice’s prior is chosen
as point A and Bob’s as point B.
In such a case, Alice starts from
a lower prior ρA and her
probability for R decreases. Bob
starts from a higher prior ρB and
his probability for R increases

4.1.2 Updating probability for reliability

It is also of interest to consider how the agents update their probabilities for the
reliability of the source. Again, the update is determined by the likelihood ratio. For
a positive piece of evidence E this is given by:

r+ = p(E|¬R)

p(E|R)

=
∑

H p(E|¬R, H) p(H)
∑

H p(E|R, H) p(H)

= a h + a h

h + 0 h

= a

h

Thus, the likelihood ratio for the reliability does depend on the prior h, but it does not
depend on the prior ρ. If h < a, the likelihood ratio for a positive piece of evidence
will be greater than one, and hence the posterior for reliability is lower than the prior,
�R < 0. If h > a, on the other hand, �R > 0. This is illustrated in Fig. 6. This
makes sense if we think that someone who initially sees the probability of H as low
will take a positive report E as an indication that the source is unreliable. Whereas, if
the probability of H is initially high, a positive report will reinforce the view that the
source is reliable.

For a negative piece of evidence ¬E, the likelihood ratio is:

r− = p(¬E|¬R)

p(¬E|R)

=
∑

H p(¬E|¬R, H) p(H)
∑

H p(¬E|R, H) p(H)
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= a h + a h

0 h + 1 h

= a

h

In this case, if h < a, the posterior probability for the reliability increases, and if
h > a, the posterior probability for the reliability decreases. If someone thinks that
the probability of H is very low, then a piece of negative evidence is taken as an
indication that the source is reliable. Whereas, if someone thinks that the probability
of H is high, then a piece of negative evidence is taken to indicate that the source is
not so reliable.

Thus, in this model, even though there cannot be polarisation regarding the hypoth-
esis itself, polarisation regarding the reliability of the source is possible. This could,
for example, happen in the legal case if Alice has a lower prior for the reliability of a
source of evidence than Bob, ρA < ρB , and she also thinks that the prior probability
that the accused is guilty is low (hA < a), while Bob considers it to be high (hB > a).
In that case, a positive piece of evidence will make Alice think the source is even less
reliable (�R

A < 0), whereas Bob will think it is more reliable (�R
B > 0).

4.2 Multiple pieces of evidence from independent sources

In some of the canonical experiments on belief polarisation, the subjects were pre-
sented with mixed evidence—that is, multiple pieces of evidence where some of the
evidence appears to be in favour of the hypothesis, whereas some goes against it.
As we saw in Sect. 3, we can represent this as a situation where the agents are pre-
sentedwith n pieces of evidence E1, ..., En , all coming from different and independent
sources.4 For example, in a legal case, the jury might receive a police report, a report
from forensic investigation, and eyewitness reports. In principle, each of these reports
should be independent of the others. The graphical structure of a source reliability
model representing these cases is depicted in Fig. 5. This structure together with the
Markov condition guarantees the independence of the variables R1, ..., Rn and, thus,
the independence of the n sources. Again, we assume the probabilistic constraints in
the table in Fig. 5 in order to keep things simple and to guarantee that the variables
R1, ..., Rn represent the reliability of the different sources assigned by the agents.

4.2.1 Updating probability for hypothesis

The direction of updating on the probability for the hypothesis H is determined, as we
saw in Sect. 2, by the likelihood ratio:

l = p(E1, E2, ..., En |¬H)

p(E1, E2, ..., En |H)

4 In this paper we do not consider the case of sequential pieces of evidence from the same source. Models
which take account of this kind of updating can be found in Olsson (2013), Hahn et al. (2018) and Merdes
et al. (2020).
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On the basis of the DAG in Fig. 5, the denominator p(E1, E2, ..., En |H) is

p(E1, E2, ..., En |H) =
∏

i

∑

R j

p(Ei |R j ,H) p(R j )

and likewise for the numerator p(E1, E2, ..., En |¬H). Thus, the likelihood ratio for
H factorises as

l =
∏

i

li

=
∏

+
l+i

∏

−
l−i (3)

where li is the likelihood ratio for observation Ei . This is a product of the likelihood
ratios for the positive pieces of evidence (for which li = l+i = p(Ei|¬H)

p(Ei|H)
= 1

1+ ρi
a ρi

)

and the likelihood ratios for the negative pieces of evidence (for which li = l−i =
p(¬Ei|¬H)
p(¬Ei|H)

= 1 + ρi
a ρi

).
As in the model in Subsect. 4.1, the likelihood ratio does not depend at all on the

prior h for the hypothesis H. It does, however, depend on the priors for the reliabilities
of the sources, namely ρi . If Alice and Bob assign different priors for the reliability
of sources, they may update to different extents on each piece of evidence. In some
situations thismay give rise to belief polarisation. Suppose, for example, that Alice and
Bob receive two pieces of evidence. Alice starts with a higher prior for H than Bob. She
also assigns a higher prior to the reliability of the source of the first piece of evidence
than to the source of the second piece of evidence. Bob, on the other hand, assigns a
higher prior to the reliability of the source of the second piece of evidence than the
first. Suppose Alice and Bob now receive a positive piece of evidence from the first
source and a negative piece of evidence from the second. Then because Alice initially
trusts the first source more than the second, she is more responsive to the positive
evidence than the negative. The overall effect of updating on the mixed evidence is
that Alice’s probability increases, �H

A = pA(H|E1,¬E2) − pA(H) > 0. Bob, on the
other hand, is more responsive to the negative evidence than to the positive evidence,
and so his probability decreases, �H

B = pB(H|E1,¬E2) − pB(H) < 0. Thus there is
belief polarisation. Notice that given the same reliability priors, if Alice had started
with a lower prior for H than Bob, the same updating can result in convergence of
their posterior probabilities. Both cases are illustrated in Fig. 7.

In general, the probability update �H depends on the reliability priors for the
different sources, the value of the parameter a, and the relative number of pieces of
positive and negative evidence. The probability update�H is negativewhen the overall
contribution of the negative evidence outweighs the overall contribution of the positive
evidence in making the overall likelihood ratio greater than one. The condition for this
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(a) (b)

(c) (d)

(e)

Fig. 7 Assume Alice and Bob both observe E1 and ¬E2 and that they both agree on the conditional
probabilities in (e). Assume further that the only difference between them is that Alice starts with a higher
prior for H and assigns a higher reliability to the first source and a lower reliability to the second source
than Bob does as in (c). Then this results in belief polarisation (a). If Alice and Bob switch their priors
for H while keeping all the other probabilities the same—i.e., if they would now have the priors given in
(d)—this would result in convergence (b)

is:

−∏

i

(

1 + ρi

a ρi

)

>

+∏

i

(

1 + ρi

aρi

)

Here, the product on the left hand side is over all negative pieces of evidence and the
product on the right is over all positive pieces of evidence. For the special case where
we have just two pieces of evidence, one positive and one negative, the likelihood ratio
is

l+− =
(

1

1 + ρ1
a ρ1

)(

1 + ρ2

a ρ2

)

which is greater than one when:

(

1 + ρ2

a ρ2

)

>

(

1 + ρ1

aρ1

)
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Fig. 8 Direction of updates to probability for H after receiving conflicting evidence E1 and¬E2. aDirection
of updates to probability for H shown on the ρ1 − ρ2 plane. These do not depend on the prior for H. Belief
polarisation happens if Alice starts with a lower prior for H, hA < hB , and her reliability priors fall in the
�H < 0 region, whereas Bob’s reliability priors fall in the �H > 0 region. An example is shown where
Alice has priors at A and Bob has priors at B. b Direction of updates to probability for H shown on the
h−ρ2 plane for the case where ρ1 = 0.1. A and B denote choices of priors for Alice and Bob which would
give rise to belief polarisation on H

This occurs when:

ρ2

ρ2
>

a ρ1

a ρ1

For any given a, there is thus a region on the ρ1 −ρ2 plane where it is possible that the
size of the update on the negative evidence is greater than the size of the update on the
positive evidence. In these cases, the probability for H decreases given both pieces of
evidence (�H < 0).

Suppose now that hA < hB . Polarisation will occur exactly when Alice’s priors for
reliability fall in the region where�H is negative, and when Bob’s priors for reliability
fall in the region where �H is positive. Such a case is illustrated in Fig. 8.

The effect of varying a on the regions is shown in Fig. 9. We see that the region
where �H < 0 grows for higher a. This is because, as we have seen, for higher a,
a positive piece of evidence has less effect on the probability update and a negative
piece of evidence has more. An interesting case is where a = 0.5. In this case, the
probability of getting positive evidence when the hypothesis is false is equal to the
probability of getting negative evidence when the hypothesis is true. In this balanced
situation, the probability update �H is positive on exactly half of the ρ1 − ρ2 plane.
Since �H

A is negative in half of Alice’s parameter space of reliability priors, and �H
B is

positive in half of Bob’s parameter space, belief polarisation will occur in one quarter
of the total parameter space of Alice and Bob’s reliability priors. This is the maximum
proportion of the parameter space on which belief polarisation can occur. Moving a
away from 0.5 reduces the size of the region where belief polarisation occurs, since
it produces an imbalance between the size of the �H < 0 and �H > 0 regions.
Similarly, as we increase the amount of evidence beyond two pieces of evidence, an
imbalance between the number of pieces of positive and negative evidence will also
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Fig. 9 Effect of varying a on �H after receiving conflicting evidence E1 and ¬E2 shown on the ρ1 − ρ2
plane. Each dotted line represents an increase of a by 0.1, starting from a = 0.1 and up to a = 0.9. The
higher a becomes, the smaller the region where �H > 0 becomes. If a = 0.5, then the regions where
�H > 0 and �H < 0 each make up exactly half of the ρ1 − ρ2 plane. Under the assumption that each
possible combination of h, ρ1, and ρ2 is equally probable for both Alice and Bob, this is the situation where
belief polarization is as likely as it can get

produce such an imbalance between the size of the �H < 0 and �H > 0 regions,
and hence reduce the region in which belief polarisation occurs. In the case where
the amount of evidence is increased, but the evidence remains balanced (i.e., equal
numbers of pieces of positive and negative evidence), the proportion of the parameter
space where belief polarisation occurs still cannot be increased beyond the maximum
of one quarter.5

4.2.2 Updating probability for reliability

We will now look at the direction of update of the posterior probabilities for the
reliabilities when there are multiple pieces of evidence. We compute the likelihood
ratio for one of the reliabilities, say R1:

r = p(E1, E2, ..., En |¬R1)

p(E1, E2, ..., En |R1)
(4)

On the basis of the DAG in Fig. 5, the denominator p(E1, E2, ..., En |R1) can be
computed as:

p(E1, E2, ..., En |R1) =
∑

H ,R2,R3,...,Rn

p(H) p(E1|H ,R1)p(E2|H , R2) p(R2) ... p(En |H , Rn) p(Rn)

=
∑

H

p(H) p(E1|H ,R1)

n∏

j=2

p(E j |H)

5 Thus, in this model, we do not see the ‘information overload’ effect which has been found in other models,
such as the model considered in Pothos et al. (2021), where considering more evidence leads to a greater
chance of polarisation.
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= h p(E1|H,R1)

n∏

j=2

p(E j |H) + h p(E1|¬H,R1)

n∏

j=2

p(E j |¬H) (5)

A similar calculation gives the numerator:

p(E1, E2, ..., En |¬R1) = h p(E1|H, ¬R1)

n∏

j=2

p(E j |H) + h p(E1|¬H, ¬R1)

n∏

j=2

p(E j |¬H)

(6)

Substituting into Eq. 4 the expressions given by Eqs. 5 and 6 thus gives the likelihood
ratio:

r = h p(E1|H,¬R1)
∏n

j=2 p(E j |H) + h p(E1|¬H,¬R1)
∏n

j=2 p(E j |¬H)

h p(E1|H,R1)
∏n

j=2 p(E j |H) + h p(E1|¬H,R1)
∏n

j=2 p(E j |¬H)

= h p(E1|H,¬R1) + h p(E1|¬H,¬R1)
∏n

j=2 l j

h p(E1|H,R1) + h p(E1|¬H,R1)
∏n

j=2 l j
(7)

Consider the special case where n = 2 and suppose the first piece of evidence is
positive, E1, and the second piece of evidence is negative, ¬E2. Then the likelihood
ratio

r+− = p(E1,¬E2|¬R1)

p(E1,¬E2|R1)

is given by substituting l2 = l−, given by the expression in Eq. 2, into Eq. 7:

r+− = a

h

(

h + h (1 + ρ2

a ρ2
)

)

Thus the updating of the probability for R1 depends on the prior h and the prior
ρ2, as well as a. Again, there is a region of parameter space where �R1 > 0 and
a region where �R1 < 0. These regions are shown in Fig. 10a for the case where
ρ1 = 0.1 and a = 0.1. There can be cases of polarisation on R1 where Alice has
priors in the �R1 < 0 region and Bob has priors in the �R1 > 0 region. In Fig. 10b
we show how these regions intersect with the regions where �H > 0 and �H < 0.
The parameter space is then divided into four regions. It is then possible that Alice
and Bob’s probabilities for both the hypothesis and the reliability update in the same
direction (when they both have priors in the same region). But it is also possible for
certain choices of priors that Alice and Bob polarise on the hypothesis, or on the
reliability, or both.
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Fig. 10 Dependence of update directions on priors after receiving conflicting evidence E1 and ¬E2, shown
on the h − ρ2 plane for the case where a = 0.1 and ρ1 = 0.1. a Direction of updates to probability for R1.
The plane is divided into a region where �R1 > 0 and a region where �R1 < 0 . Belief polarisation for
reliability can occur when Alice starts with a lower prior for R1, ρ1A < ρ2B , and her reliability priors fall
in the �R1 < 0 region, whereas Bob’s reliability priors fall in the �R1 > 0 region. An example is shown
where Alice has priors at A and Bob has priors at B. b Direction of updates to both H and R1. Depending
on how priors are chosen, Alice and Bob can polarise on H, on R1, on both, or neither. For example, if
Alice chooses A and Bob chooses B1, there is belief polarisation on R1, but not on H. On the other hand,
if Alice chooses a prior at A and Bob chooses a prior at B2, there is belief polarisation on both R1 and H

5 Discussion and relation to other work

How do our results relate to work in experimental psychology on belief polarisation?
Oneof themostwell-known studies of belief polarisation looked at howpeople updated
their beliefs about the effectiveness of the death penalty as a crime deterrent after
seeing mixed evidence (Lord et al. 1979). Participants were asked to read about two
fictional studies, one of which supported the idea that the death penalty is an effective
crime deterrent, and the other which supported the idea that it is not. It was observed
that supporters of the death penalty who already believed it to have a deterrent effect
becamemore convinced that it was an effective crime deterrent after seeing the studies,
whereas opponents who initially did not believe in the deterrent effect became more
convinced that it was not an effective deterrent. The same evidence thus led to belief
updates in opposite directions after seeing both studies. It was also found that the
participants did respond to the individual studies in the sense that they all shifted their
attitude in favour of deterrent efficacy when presented with the prodeterrent study and
shifted against it when presented with the antideterrent study. However, the amount by
which the opinions shifted differed between proponents and opponents. Proponents
revised their opinion more than opponents after reading the prodeterrent study, and
less than opponents after reading the antideterrent study.

A conclusion that has often been drawn from such experimental studies of belief
polarisation is that it results from biased assimilation of the evidence presented. The
key idea is that, asLord et al. (1979) put it, ‘people tend to interpret subsequent evidence
so as to maintain their initial beliefs’ (p. 1099). There have been a number of proposals

123



10272 Synthese (2021) 199:10253–10276

concerning what the exact mechanism can be that drives this differential weighting
of evidence, with some favouring more affective and others favouring more cognitive
explanations. If what the agent is doing is simply discounting evidence that disagrees
with their prior views on H, then this would seem to amount to a rather irrational
form of dogmatism (Kelly 2008). It may then be a case of motivated reasoning or
confirmation bias (Taber and Lodge 2006; Taber et al. 2009). Various other processes
have been suggested which may not be so blatantly a case of irrational bias. It may
be, for example, that prior beliefs influence how evidence is to be interpreted (Fryer
et al. 2013). Or it may be that people have the tendency to scrutinise evidence which
disagrees with their prior views to a greater extent than evidence that agrees with it
(Lord et al. 1979; Munro and Ditto 1997; McHoskey 1995). Another proposal is that
real human agents have bounded memories, and it may make sense to forget reasons
and evidence which does not fit into a coherent picture (Singer et al. 2019). For all
these theories, some kind of biased influence of the initial belief in the hypothesis on
the way evidence is handled or processed is postulated.

However, as we saw in Sect. 2, for some belief networks, differences in the pri-
ors assigned to a hypothesis H have no impact on the likelihood ratio and thus are
not responsible for belief polarisation on H . Belief polarisation can nonetheless be
produced by differences in priors for other variables in the agents’ belief networks.
Jern et al. (2014) have used this point to suggest an alternative explanation for the
results in Lord et al. (1979). They propose that the Lord et al. (1979) results could also
be produced, for example, by a simple network with the structure shown in Fig. 3b
(Jern et al. 2014, pp. 211f). In this model, H is a variable representing the hypothesis
that the death penalty is an effective crime deterrent, E is a study which may either
support the idea that the death penalty is an effective crime deterrent (E) or support the
idea that it is not (¬E), and V is a variable representing the view that the consensus
expert opinion supports the effectiveness of the death penalty. Jern et al. show that if
Alice and Bob have different priors for V as well as H, that a pattern of updating like
that observed in the Lord et al. study can be seen in such a model. Jern et al. do not
claim that this is necessarily the mechanism which is at work in this experiment. Their
point is simply that alternative explanations are available, which do not involve any
biased evaluation of the evidence. Whether or not such an alternative explanation is
the correct one depends on whether the beliefs of the subjects really are governed by
a specific extra belief like V.

In this paper, we have examined whether taking into account opinions about the
reliability of the source of evidence can also provide alternative explanations of the
belief polarisation phenomenon. Such an explanation has already been suggested in
Cook and Lewandowsky (2016) in a model which also includes worldview as a vari-
able. We find that indeed a source reliability model such as depicted in Fig. 5 can
also reproduce the pattern of weighting of evidence seen in the Lord et al. (1979)
experiment. Whereas the alternative explanations invoked by Jern et al. (2014) rely
on specific extra beliefs which subjects then may or may not be entertaining, it is
perhaps plausible that in fact we always do have some beliefs about the reliability of
our sources which we are updating in tandem with our views about the hypotheses
in question. Thus, the type of explanation we offer potentially has a more generic
character.
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However, it is actually not so clear that the mechanism modeled in Fig. 5 actually
represents a plausible alternative explanation of the Lord et al. (1979) set-up. This is
because the explanation relies, as we have seen, on subjects assigning different prior
reliabilities to the two sources. Notice that if ρ1 = ρ2, the condition for the likelihood
ratio (Eq. 3) no longer depends on the priors at all, and thus belief polarisation is
not possible. However, in the Lord et al. study there is no particular reason why the
participants should set their priors differently for the reliabilities of the two studies,
given that they are presented in exactly the same way. In the experiment, participants
were simply given cards which present the results of the studies. It seems natural then
to expect that they should assign the same prior for reliability to each of the studies,
and if this is the case, then the model would predict no belief polarisation. In the
experiment, participants were asked to assess the reliability of the studies, but on the
basis of what the studies themselves said. Thus, what was examined here was not a
prior probability for the reliability of the study, but a posterior which already depends
on the content of the study itself.

Even if the model does not provide a convincing explanation of the Lord et al.
(1979) results, we still think that the mechanism which it elucidates may well be at
work in real-life contexts. In many real-life settings, agents do have prior views about
the reliability of their sources. They may, for example, trust one news source more
than another. In the legal case, some jurors might have greater initial trust in the police
than others. Some may have greater trust in forensic investigations than others, or in
the reliability of eye-witnesses. The experimental set-up of Lord et al. may actually
represent a rather unusual situation, since it is arranged in such a way that agents have
no independent way to form prior opinions about the reliability of their sources. It
is even possible that such an unusual set-up effectively forces people to assess the
reliability of their information differently from how they normally would, making
use of their own prior views about the hypothesis since that is all they have access
to.

What our model shows is that even small initial differences in how reliable we
take our sources to be can in certain circumstances be amplified into divergence of
opinion on crucial hypotheses, even if there is initially no difference of opinion on
these hypotheses. The reliability priors determine whether or not a subject updates in
a positive or negative direction given mixed evidence. However, there is no system-
atic connection between having higher prior for the hypothesis and having reliability
priors which produce positive updates, or vice versa—if this is the case, then there
will be belief polarisation. But it is also possible to have a low prior for the hypoth-
esis, and reliability priors which induce a positive update, in which case, there will
be convergence—as we see in Fig. 10b, all different combinations are possible. Thus,
in this model the correlation between having a high prior for H and having reli-
ability priors that lead to positive update can be accidental, rather than driven by
any kind of bias. The model predicts then that we should not expect always to see
polarisation. Rather whether polarisation occurs depends on the subjects happening
to have a certain constellation of prior opinions. In fact, follow-up experiments to
the Lord et al. (1979) study have shown that indeed belief polarisation only occurs
in a certain subset of subjects, and then rather infrequently Kuhn and Lao (1996).
This kind of result is what a model like ours would predict. On the other hand, the
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natural expectation if the effect is caused by some kind of consistent biased assim-
ilation is that it should occur more of the time. An exception of course would hold
if there were some reason to expect that the bias manifests itself in some people but
not others. Jern et al. (2014) have set up an experiment to test whether in a par-
ticular case, belief polarisation can be explained by a normative Bayesian model
rather than by biased assimilation. To make such a comparison it is necessary to
carefully compare the effects of certain manipulations of prior beliefs on the pro-
portions of subjects responding in a certain way (Jern et al. 2014, pp. 215–218). In
principle it may be possible to do similar experiments to study the effects of sub-
jects’ prior beliefs about source reliability, as suggested by simple source reliability
models.

6 Conclusion

In this paper, we have considered the question of whether beliefs about reliabil-
ity of sources of information may play a role in driving belief polarisation. We
have found that in a simple Bayesian model in which agents update not only their
opinions about hypotheses but also about source reliability, belief polarisation can
occur on mixed evidence. In this model, the amount by which an agent’s opinion
changes when it is updated on a piece of evidence depends on how reliable she
takes the source of the evidence to be. Thus, if an agent initially has more trust
in the reliability of a particular source than another agent, she may update more
strongly on evidence from that source. When two agents are presented with mixed
evidence, consisting of some evidence in favour of and some evidence against a
certain hypothesis, their differential updates due to differences in prior opinions
about reliability of sources may produce belief polarisation. This kind of mecha-
nism for producing belief polarisation differs from mechanisms invoked in many of
the standard explanations in that it does not rely in any way on the agents involved
being influenced by their prior views on the hypothesis in any biased or undue
way.
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