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Chapter 4: Numerical confidence

Chapter 1 of this book made the case that there is a useful role in epistemology
for an attitude of confidence that can be higher or lower. Chapters 2 and 3
considered how we might understand this attitude’s role either in governing
action or in representing the world truthfully. Both of these roles seem to lead
to the idea that degrees of confidence come on a numerical scale satisfying the
probability axioms. That is, for any propositions p and q:

• C(p) ≥ 0.

• If the agent is certain of p, then C(p) = 1.

• If the agent is certain that p and q aren’t both true, then C(p ∨ q) =
C(p) + C(q).

However, many philosophers have claimed that this sort of probabilism requires
unrealistic precision and numbers in the head, and therefore it can’t be correct
either as a theory of actual people, or even of the sorts of models we might aspire
to emulate. In this chapter I will consider several of these objections in order to
defend the idea of degrees of confidence as precise, numerical probabilities. Al-
though I don’t have positive evidence from empirical psychology to suggest that
actual humans really do behave this way, I will argue that the sorts of features
philosophers usually point to in arguing against precise numerical probabilism
are actually quite compatible with it. Whether or not we in fact have this sort
of confidence, creatures that do have it wouldn’t have to be notably different
from us.

This discussion will also be useful in clearing up some misconceptions about
what it could mean for degrees of confidence to be precise numerical probabil-
ities. I will use many tools from the theory of measurement in social science
and the philosophy of science, to compare numerical degrees of confidence to
many other features of the world that we feel happy representing numerically.
Probabilism itself will be seen to be something like the Fahrenheit scale for
temperature — it can accurately represent the underlying facts in a precise and
numerical way, even though many aspects of it are pure conventions that could
have been represented otherwise.
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There are three main families of objections to precise numerical probabilism
that I will address in this chapter. The first set of objections focuses on the
structure of the arguments from the previous chapters in favor of probabilism,
claiming that these arguments couldn’t tell us about confidence itself, but only
about how we choose to represent it. The second set of objections claims that
confidence (or any related notion of “partial belief”) could at most explain a
small amount of the psychological behaviors that are claimed for it. The third set
of objections claim that in any case, any numerical measurement of confidence
could at best be extremely imprecise, so that using precise real numbers is
drastically misleading.

1 Representationalism

The first family of objections is exemplified by Zynda (2000) and Meacham
and Weisberg (2011). They focus on the representation theorem arguments
(discussed in Chapter 2), and claim that these can’t establish the literal truth
of the claim that degrees of confidence either do or should satisfy the axioms of
probabilism. At most, they claim, these arguments can serve a sort of heuristic
purpose. I will respond by clarifying the role of numbers in the probabilistic
representation of degrees of confidence. I will argue that the challenges raised by
these authors is no more significant than analogous challenges we can raise to the
role of numbers in our thinking about temperature, or distance, or many other
physical quantities. While their challenges don’t obviously apply to the accuracy
arguments discussed in Chapter 3, I think that considering these arguments can
help clarify our thinking about the role of numbers there as well, and what we
must assume about mental representation in order for that argument to justify
probabilism.

Zynda phrases the representation theorem argument for probabilism as using
the following three premises:

The Rationality Condition: The axioms of expected utility theory
are the axioms of rational preference.

The Reality Condition: If a person’s preferences can be represented
with a set of degrees of belief that obey the probability calculus,
then the person really has degrees of belief that obey the laws of the
probability calculus.

The Representation Theorem: A person’s preferences satisfy the ax-
ioms of expected utility theory if and only if the person’s preferences
can be represented with a set of degrees of belief that obey the prob-
ability calculus.

Together, these premises lead to the conclusion that a rational person really has
degrees of belief that obey the laws of the probability calculus. As we saw in
Chapter 2, there are significant questions about the Rationality Condition, and
whether the particular axioms that it imposes really are requirements of rational
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preference. One might worry that the correct axioms of rational preference only
suffice to prove a weakened form of the Representation Theorem. However,
Zynda grants that we might be able to find an appropriate combination of
axioms and theorems, and instead focuses on the Reality Condition. Even if we
can ensure that a rational person can be represented with a set of degrees of
confidence that obey the probability calculus, he thinks there may be no sense
in which they really have such degrees of confidence.

1.1 Four Views

He considers four different views that one might have about degrees of con-
fidence, borrowing terminology from philosophy of science and philosophy of
mind. He calls these views “eliminativism”, “antirealism”, “weak realism”, and
“strong realism”. These four views are a useful framework for understanding
what we think of any putative category in the world. The focus of his argu-
ment is that a theorist who relies on the representation theorem argument for
probabilism must reject strong realism. Meacham and Weisberg go further and
say that such a theorist must reject even weak realism. My aim is to defend the
idea that strong realism is compatible with all the challenges raised by Zynda,
and Meacham and Weisberg.

Eliminativism about a concept is the view that this concept doesn’t corre-
spond to anything in the world. This is the view that contemporary scientists
take to historical concepts like “phlogiston”. Early modern alchemists had de-
veloped the historical elemental theory of earth, air, fire, and water, and had
come to the conclusion that there were multiple separate elemental earths, and
thought of fire as the emission of a substance called “phlogiston” that is part of
the composition of various fuels. Through their understanding of the smelting
process, they had come to the conclusion that the different metals (copper, iron,
silver, gold) were each compounds of a particular earth with phlogiston. They
also recognized phlogiston as a substance given off in the respiration of ani-
mals. The English scientist Joseph Priestley was able to extract a form of air he
thought of as “dephlogisticated”, because it promoted combustion and helped
the respiration of animals. His work was translated into French by Marie-Anne
Paulze Lavoisier, who assisted her husband Antoine-Laurent Lavoisier in vari-
ous experiments proving that metals actually gain mass when converted to the
corresponding earth. They argued that Priestley’s “dephlogisticated air” was
actually a new element, which they called “oxygen”, and that combustion and
respiration should be understood in terms of absorption of oxygen, rather than
emission of phlogiston. In contemporary theory, the different roles played by
phlogiston in alchemical theory are played in various places by spare electrons,
absence of oxygen, reducing potential, and various other concepts, but phlogis-
ton itself has been rejected. There are similar histories with the “caloric” theory
of heat as a fluid (rejected in favor of a statistical mechanical explanation in
terms of the energy states of the microscopic constituents of a substance), and
the “luminiferous ether” that supposedly conducted light (rejected by Einstein’s
theory of relativity, in which there is no fixed substance that electromagnetic
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waves excite).
Eliminativism has been an important view in the philosophy of mind, strongly

associated with the work of Paul and Patricia Churchland (Churchland (1981,
1986)), but with important precedents in the work of Wilfrid Sellars (1956)
and others. The idea is that just as the concept of phlogiston turned out to
be a mistake (albeit a useful one) on the way towards understanding how sub-
stances really transform, our ordinary psychological concepts like belief, desire,
and perception are also mistakes on the way to a better understanding of the
mind.

Zynda thinks that the eliminativist about mental content is unreasonable,
because he or she denies the existence of “those features that contribute es-
sentially toward making him or her a person and agent”. However, I think
thoroughgoing eliminativism about mental concepts generally is a more serious
challenge — perhaps personhood and agency can be reinterpreted in the new
terms (as combustion was reinterpreted in the oxygen theory), or perhaps we
should reject those concepts too once we better understand our nature as phys-
ical animals. I think that properly responding to the eliminativist requires a
deeper empirical study of the human mind and behavior than I am in a position
to carry out. For further discussion of eliminativism, see Ramsey (2013).

In any case, the main thrust of the eliminativist challenge is about actual
humans, and as I argued in Chapter 1, I think the project of epistemology
is meant to apply not just to actual humans but to other potential cognitive
architectures that could count as epistemic as well. In the rest of this chapter I
aim to respond to the sorts of challenges raised to the numerical measurement
of degrees of confidence by philosophers that don’t aim to fully eliminate the
concepts of epistemology from the human mind. I claim that the features of
human cognition focused on by these philosophers are not unlike what one might
expect from Bayesian agents. Thus, unless one wants to reject the application
of all ordinary concepts of epistemology to humans, I don’t think there is clear
reason to reject the application of numerical degrees of confidence satisfying a
version of probabilism.

The second view of a concept that Zynda considers is antirealism. Antire-
alism is sometimes taken as a global view about nearly all of the concepts of
science. This view is perhaps most fully defended by van Fraassen (1980). On
van Fraassen’s view, the most our evidence tells us about the world is that our
observations proceed as if there were subatomic particles and distant galaxies,
and as if DNA were a molecule obeying particular chemical laws that guided
the evolution of life over millions of generations. Since we can’t directly observe
the microscopic or the extremely distant or the far reaches of biological history,
we can’t be sure that there is anything real in the world corresponding to these
theoretical concepts. At most, we can say that these theories correctly predict
the outcomes of experiments.

This sort of global antirealism about theoretical concepts would be no spe-
cial challenge to probabilism about degrees of confidence. But some scientific
theories have involved a more local antirealism. An example is the theory of
“quasiparticles” in solid state physics. A substance like copper that is a good
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electrical conductor can be understood as one in which electrons have a very
large number of allowable states at many energy levels, so that they can move
very easily between them under the influence of electrical forces. A substance
like rubber that is a good electrical insulator can be understood as one in which
electrons have very few allowable states, so that they basically can’t move at
all. A semiconductor like silicon is a substance in which there is a set of low
energy states that electrons can easily move between, and also a set of high
energy states that electrons can easily move between, but it is difficult to get
an electron to move between the low energy and high energy states. Ordinarily,
all the low energy states are filled, and all the high energy states are empty,
and the negative charges of these low energy electrons are balanced with the
positive charges of the atoms. But if you introduce an extra electron into one
of the high energy states, then it can flow easily through the silicon as a nega-
tively charged particle, without interference from the sea of electrons in the low
energy states.1 Interestingly, if you instead remove an electron from one of the
low energy states, this allows nearby electrons to move easily to fill the hole.
Instead of thinking about the slight movement of lots of electrons, it becomes
easier to think of the hole as a “quasiparticle” that moves through the silicon
as if it were a positively charged particle. Although only the electrons are really
there, it’s sometimes easier to talk about what’s going on by talking about the
holes.

Interestingly, this theory of holes initially arose not in the discussion of semi-
conductors but as the English physicist Paul Dirac’s explanation of antimatter.
He noted that if we pretend that the vacuum of space has this similar separation
between high energy and low energy states for electrons, and pretend that there
are electrons filling all the negative energy states, then we could observe holes
moving as positive charges just as electrons move as negative charges. If an
electron encounters a hole, it can “fall down” to the lower energy state, releas-
ing energy, and destroying both the free electron and the hole. This behavior
of holes is exactly the observed behavior of positrons — the anti-particle corre-
sponding to electrons. In semiconductor physics it is common to think of the
hole as a fictional entity that simplifies our discussion of the behavior of the real
low energy electrons in different types of conduction. In vacuum physics it is
common to think of the sea of electrons and the excess low energy states they
fill as a fiction that can help our thinking of the real antimatter. Van Fraassen
would insist that all ways of thinking about the situation are equally fictional,
while a local anti-realist would suggest that one picture is the real picture, and
the other is a useful fiction.

The difference between anti-realism and eliminativism is that the elimina-
tivist says that the concept is confused and leads to errors, while the anti-realist
allows that although the concept corresponds to nothing real in the world, it

1More accurately, there is interference from the sea of electrons in low energy states, but
the net effect of this interference is that the high energy electrons moves as if it were an
electron of higher mass in empty space. This is another anti-realist aspect of the treatment
of semiconductors.
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allows one to make the same predictions and explanations as the correct theory.2

Anti-realism in this sense is not so common in epistemology and the philoso-
phy of mind, though the term “anti-realism” is sometimes used to mean what
Zynda and I call eliminativism. However, in my paper, “Dr. Truthlove, or,
How I Learned to Stop Worrying and Love Bayesian Probabilities” (Easwaran,
2015), I showed how a particular realist view of the concept of full belief could
underpin an anti-realist story of this sort about Bayesian degrees of confidence
satisfying the probability axioms. I didn’t give any reason to think this sort of
view would be true, but aimed to use it to show that a realist about full belief
should not be a total eliminativist about the Bayesian view.

Zynda’s main focus however is the distinction between what he calls “strong
realism” and “weak realism”. While these views agree that the concept involved
corresponds to something real, they disagree about how fundamental the con-
cept is. A biological population is a real thing, but it is composed of many
individuals that compete and reproduce with each other. The individuals are
more fundamental than the biological population, but there are useful laws that
can be expressed at both levels. The planets of the solar system are real objects,
but they are composed of chunks of solid and gas (and in a few cases liquid)
that move around in ways that are more fundamental. As Zynda points out,
for some purposes we can treat the center of mass of the Jupiter system as the
object that orbits the sun, but while this center of mass is real, its behavior is
in some fundamental sense to be explained by the behavior of all the gases and
metals and ices of the planet and its moons.

The distinction between strong and weak realism is comparative here. Nei-
ther Zynda nor anyone else (except perhaps some sort of Cartesian dualist about
the mind) thinks that degrees of confidence are fundamental irreducible entities
in the world. Everyone agrees that degrees of confidence, if they really exist,
are somehow constituted (at least in humans) by the behavior of bodies and
neurons, and their interaction with the world. Like anything else psychological
or social, the extent of the physical world that constitutes these states is un-
clear. There is such a thing as the exchange rate between the US dollar and the
Japanese yen, but is it just constituted by the attitudes of central bankers, or
does it depend on the behavior of all international commerce between the United
States and Japan, or does it even depend in minute ways on the degree to which
I am prepared to act on an idle fantasy of purchasing a ticket to hike up Mt.
Fuji? Similarly Putnam (1975) argues that the contents of a person’s mental
states depends not just on the states of her own body, but also on her history of
interaction with the objects her thoughts are about, and her tendencies to defer
to various social ‘experts’ on the meanings of her concepts. Furthermore, Clark

2Depending on how detailed the predictions and explanations required are, these two views
may shade into one another. The treatment of fuels as highly phlogisticated substances (rather
than their modern treatment as reducing agents that combine with oxidizers) may be sufficient
for some purposes that aren’t too sophisticated. Meanwhile, the treatment of a hole as a
quasiparticle behaving like a positively charged electron in a semiconductor does run into
some difficulties near the edges of the solid, where it might have to interact with electrons
from a substance with different energy levels.
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and Chalmers (1998) argue that one’s mental state may partly be constituted
by the various physical and social structures that shape one’s mental life, from
notepads to smartphones to communities.

But the question for Zynda is whether the preference that the axioms of a
representation theory apply to is more or less fundamental than the degrees of
confidence that form part of the representation that is proved to exist. The
strong realist about degrees of confidence will say that however degrees of con-
fidence are constituted in the world, they are part of what gives rise to the
preferences of an agent. The weak realist, on the other hand, will say that pref-
erences are the more fundamental mental state, and that degrees of confidence,
and perhaps even belief and desire themselves, are just useful summaries of a
more fundamental notion grounded in something like our choice behavior.

I take it that something like the strong realist view is the one most people
land on, once they accept the notion of degree of confidence as something real. It
certainly seems natural to say that one prefers one act to another because one is
more confident that it will lead to a good outcome. But Zynda, like many other
philosophers and economists that work with representation theorems, wants to
argue that this is an illusion. The only way that they say we can make sense
of degrees of confidence is as something implicitly defined by our preferences,
rather than as something more fundamental that explains our preferences.

1.2 Zynda’s Challenge

Zynda argues that the strong realist can’t support the Reality Condition of the
representation theorem argument. To do this, he describes two agents, called
Leonard and Maurice. Leonard and Maurice have all the same preferences over
gambles — they both prefer to receive a prize if a fair coin lands heads rather
than if a fair die rolls a 3, and both prefer to receive a prize if a fair die comes
up less than 5 than if a fair coin lands heads.

However, they report their degrees of confidence quite differently. Leonard
reports his on a scale from 0 to 1, and says his confidence that a fair coin lands
heads is .5, while his confidence that a fair die rolls a 3 is 1/6. His degrees
of confidence satisfy the probability axioms — they are non-negative, he has
confidence 1 in things he is certain of, and his confidence in a disjunction is
the sum of his confidences in the disjuncts, if he thinks they are incompatible.
Maurice, however, reports his degrees of confidence on a scale from 1 to 10,
and says his confidence that a fair coin lands heads is 5.5, while his confidence
that a fair die rolls a 3 is 2.5. His degrees of confidence satisfy a different set
of axioms — they are at least 1, he has confidence 10 in things he is certain of,
and his confidence in a disjunction is 1 less than the sum of his confidences in
the disjuncts, if he thinks they are incompatible.

Because these agents have the same preferences, they both satisfy the Ra-
tionality Condition of the representation theorem argument. Thus, by the Rep-
resentation Theorem, both can be represented as having degrees of confidence
satisfying the probability axioms. In order to save the Reality Condition there-
fore, we must deny the significance of Maurice’s self-reports of violating the
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probability axioms. A weak realist might say that since degrees of confidence
are dependent on preferences, the self-reports don’t matter, and the degrees of
confidence of both agents really are those reported by Leonard. But a strong
realist must say that the degrees of confidence are in some sense prior to the
preferences. In order to save the Reality Condition, a strong realist must there-
fore say that whatever it means to “obey the probability calculus” is something
that is shared by Leonard and Maurice. In particular, none of the numerical
features of probability are literally true.

Meacham and Weisberg (2011) argue that this sort of view would deny too
much of probabilism to be worth saving as a theory of real degrees of confidence.
They note that while Leonard and Maurice’s self-reports differ just by a simple
transformation of adding 1 and multiplying by 9, one could proliferate examples
with other mathematical transformations. If someone else had degrees of con-
fidence that were the squares of those of Leonard, then this person would have
confidence 1/36 that a fair die rolls a 3 (where Leonard has 1/6), and 1/4 that
a fair coin comes up heads (where Leonard has 1/2), and 25/36 that a fair die
rolls less than a 6 (where Leonard has 5/6). Both people agree that rolling a 3
is least likely, getting heads is in the middle, and rolling less than a 6 is most
likely. But while Leonard says that these three are equally spaced, this other
person says that her confidence of getting heads is substantially closer to her
confidence of rolling 3 than to her confidence of rolling less than a 6. At most,
Meacham and Weisberg say, we can preserve the reality of ordinal comparisons,
saying which events are more likely than others, but not saying anything about
cardinal comparisons of how much more likely one is than another.

Furthermore, Meacham and Weisberg argue that this view leaves us unable
to compare the degrees of confidence of different people. If degrees of confidence
are just a feature of what each person has, and each can be transformed in a
different way, then there is no way to compare a degree of confidence one person
has with a degree of confidence of another person.

However, I will argue that by properly understanding the analogy between
the measurement of degree of confidence and the measurement of quantities like
distance, temperature, and so on, we can recover interpersonal comparisons of
confidence. Furthermore, we can recover various notions of how much more
confident one is of one proposition than another, though I think there are some
conceptual worries about the extent to which this notion really is significant.
While none of this establishes that degree of confidence is in fact prior to pref-
erence, it is just meant to show that there are no significant problems on this
front from assuming that it is.

1.3 Measurement theory

The aim of this section is to argue that degree of confidence is much like temper-
ature. Donald says that water freezes at 32 degrees, and that room temperature
is 68 degrees, while Justin says that water freezes at 0 degrees, and that room
temperature is 20 degrees. We take this to be a difference in reporting, but not
a difference in the strongly real temperature underlying the two descriptions.
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As I will argue towards the end, there is actually a similar ambiguity to the
notion of “how much hotter” as there is in “how much more confident”. But
before I get there, I will use distance as an example to show how the numerical
representation of real parts of the world works.

The central ideas were set out most systematically by Krantz et al. (1971),
and my presentation follows much of their work. The concepts of length, mass,
temperature, and so on aren’t literally numerical. Rather, in each case, there
are some real physical relations that happen to obey various laws, and since
those laws have the same structure as some arithmetical laws, we can choose to
represent those physical relations with numbers. Some features of this represen-
tation correspond to the real physical laws, while others are just conventional
choices made to simplify our calculations. The same is true for degree of confi-
dence, and the challenge is to figure out which aspects of the representation are
to be taken literally and which are to be taken as conventions. I will outline the
situation for distance, then discuss some additional features that show up in the
discussion of temperature, and then draw analogies for degree of confidence.

1.3.1 Distance

For distance, we assume there are two fundamental, real relations. The first is
a comparative notion that lets us compare pairs of locations. If A and B are
two locations, and C and D are two locations, we imagine rigid rods stretching
between those locations, and think about what would happen if we were to line
them up parallel to each other, starting from the same point. If the rod that
started stretching from A to B would stick out past the end of the rod that
started stretching from C to D, then we say that AB � CD. Some amount of
fictionalization and idealization is needed for this — there is no rod stretching
from Houston to Dallas, and there is no rod stretching from Los Angeles to New
York, and even if there were, no one could move them to line them up. But
what is important is that there is some feature of the world that means that if
these rods did exist, and someone could move them, the one from Los Angeles
to New York would stick out past the one from Houston to Dallas. Maybe you’d
need to somehow move the Rocky Mountains, and relocate the population of
the central United States to move these rods without breaking them. But the
claim is that something like this is part of what we really mean when we say
that the distance from Los Angeles to New York is 2470 miles while the distance
from Houston to Dallas is only 239 miles.

The numerical representations of these distances need to correspond to this
real relation. We will want to represent each pair of locations with a number
in a way that AB � CD iff the number corresponding to AB is greater than
the number corresponding with CD. We will also eventually impose some other
constraints on this representation, but in order for this sort of representation to
work at all, we need the world to govern the behavior of these hypothetical rigid
rods in particular ways. The first thing that is needed is that since no number
is greater than itself, it needs to be the case that if you start with two copies of
a rigid rod, there is no way to move them so that one of them sticks out past
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the other. This is basically what we mean by “rigid”, but it is important that
there really be some feature of space itself (or at least, the part of space we are
considering) that supports this feature. If there are strange wormholes or ways
of moving objects relativistically that deform them in this way, then our notion
of distance will break down if we try to apply it in those contexts. The second
thing that is needed is that if AB � CD and CD � EF , then AB � EF . That
is, if there were three of these rigid rods, and the first could be moved to stick
out past the second, and the second could be moved to stick out past the third,
then the first could be moved to stick out past the third. In combination with
the first rule this means that no matter how you move two rods, whichever one
sticks out past the end of the other always will, no matter how you line them up.
This seems quite natural, but it is an empirical feature of space that guarantees
this, and not mathematics itself. One other important thing to note — since
we are imagining such hypothetical rods connecting any pair of points in space,
there is also a hypothetical “rod” AA from a point to itself, which we might
think of as empty. It is important that for any two distinct points A and B,
AA is not longer than BB, but AB is longer than either AA or BB.

The second real feature of the world that is needed to fix our numerical
representation of distance is the idea of what happens if two of these hypothetical
rigid rods are laid end-to-end in a straight line. The resulting “concatenation”
of rods should behave just like one of these rods, and can thus be compared to
individual rods. If AB and CD are two such rods, then we will represent this
concatenation by AB ◦ CD. Again, these rods don’t really exist, and it’s even
harder to imagine lining a pair of them up in a row and making the result rigid
than it is to imagine just comparing two of them. But I claim that something
about this idea is that we mean when we note that the distance from Houston
to Austin of 152 miles, added to the distance from Dallas to San Antonio of 248
miles, is less than the distance from New York to Chicago of 737 miles.

We want our numerical representation to be such that AB◦CD is represented
by the number that is the sum of the numbers representing AB and CD. In
order for this to work, there are several more features of these rods that the
world needs to ensure. First, since x + y = y + x, it needs to be the case that
sticking two rods together in one order, and sticking them together in the other
order, give rods of the same length. Second, it needs to be the case that if
AB � CD and EF � GH, then AB ◦ EF � CD ◦ GH. That is, there is no
way to put together two shorter rods and get something longer than what you
get if you put together two longer rods. Although these features of the physical
world are so fundamental to our understanding of the world that they feel like
mathematical truths, they are in fact substantive assumptions. In fact, much
of our intuitive understanding of arithmetic probably derives from our physical
experience with distances and other real-world concepts that behave in these
analogous ways.

Once we have all of these features, we can begin to assign numbers to dis-
tances. For the trivial “rod” AA, we see that sticking it to the end of any other
rod doesn’t change the length. So if concatenation is represented by addition,
then this trivial rod must be represented by the number 0. If we choose some
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other specific rod and call it 1, then we can begin to approximate other distances
by seeing how many times this rod can go into it. Something like this is behind
the idea of using one’s foot to measure distances in feet. But the assumptions
we have made so far don’t quite guarantee that we can get precise numbers to
correspond to all distances.

One quickly notes that whatever rod one uses, there are distances that don’t
exactly line up with any number of copies of that rod. If you lie down on the
ground and mark the length from your head to your toes, it is quite unlikely
that you can fit exactly 5 feet or exactly 6 feet in that length. Most likely
there will be some space left over. We are used to dealing with this by choosing
some shorter rod (perhaps the first joint of one’s thumb, which one can call
an “inch”), using it to measure the leftover, and seeing how many times this
rod goes into the first one. To be sure that this technique can always work to
get more and more precise numerical approximations of distance, we need it to
be the case that for every rod, there is another rod that goes into it at least
twice. That is, for every AB, there is some CD with AB � CD ◦ CD. This
question of whether space is actually arbitrarily divisible in this way has been
a philosophical question since antiquity, and lies at the heart of paradoxes from
Zeno to Kant. But for most purposes, we can at least treat distance as if this
sort of divisibility obtains.

The other fundamental assumption that is needed for this method to work
is that for any measuring rod we choose (other than the trivial rod AA), and for
any distance we want to measure, it has to be possible to exhaust this distance
by some finite number of copies of the measuring rod. No distance can actually
be infinitely far, and no non-empty rod can actually be infinitely short. This is
known as the Archimedean principle of distance, and again is part of our basic
understanding of the world derived from experience. If you are standing in Los
Angeles, it can feel like putting one foot in front of the other gets you no closer
to New York. But if three feet are as long as a yardstick, and 22 yardsticks are
as long as a surveyor’s chain, and 80 chains make a mile, and there are 2470
miles from Los Angeles to New York, then there is some number of feet that
gets to New York. There is even some number of millimeters to the edge of the
galaxy!

Assuming that distance actually has all of these features, so that moving rods
around doesn’t change their ordering, and so that rods can be concatenated in
appropriate ways, and every distance can be subdivided by every other, we can
represent distances with numbers. If we choose any unit to represent with the
number 1, then all other distances can be represented in a unique way if we
want concatenation to be represented by addition, and greater distance by a
greater number. The choice of unit is arbitrary, and once that choice is made,
the rest of the representation is fixed. There is no sense in which the number
2470 is itself part of the distance from New York to Los Angeles — the number
is a pure convention, and someone measuring in kilometers would represent the
same distance as 3975.

While most modern people are at least implicitly familiar with this much
of the conventionality of the numerical representation of distance, there is a bit
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more that can be abstracted away from the numbers. We made an arbitrary
choice to represent concatenation of rods by addition of numbers, rather than
some other operation. A slide rule makes use of this arbitrariness to help us
calculate multiplication or other functions. (Image CC by Jean-Jacques MILAN
at Wikimedia)

Where the ordinary rule at the bottom of this slide rule puts the numbers 0, 3, 6,
etc. at equal intervals, the slide rule just above it puts the numbers 1, 2, 4, etc. at
equal intervals, with the other numbers (and fractions of them) at appropriate
places in between. With an ordinary ruler, sliding a length indicated by 4.9
to the end of a length indicated by 1.8 will yield a combined length indicated
by their sum of 6.7. But with a slide rule, sliding a length indicated by 3 to
the end of a length indicated by 1.5 will yield a combined length indicated by
their product of 4.5. Sophisticated slide rules sometimes have multiple types of
indication of distances, so that other operations than addition or multiplication
can also be indicated by concatenation.

What is essential to the types of mathematical operations that can be indi-
cated by concatenation is that they obey the properties of the actual physical
concatenation operation. Concatenating a pair of lengths in either order yields
the same total length, so the operation we represent concatenation with must
also obey this “commutative” law. Concatenating a pair of longer distances
yields a longer distance than concatenating a pair of shorter distances, so the
operation we represent concatenation with must be increasing in both of its in-
puts. Concatenating any distance with the trivial distance from a point to itself
must yield the original distance, so there must be some number that serves this
null purpose in the operation we represent concatenation with. For addition
this number is 0, but for multiplication this number is 1.

If we want to make a slide rule where concatenation represents multipli-
cation, we must mark the beginning of the ruler with 1, and then choose a
particular distance, perhaps an inch, to mark with any greater number, such
as 10. Points at every inch along the ruler are then marked 100, 1000, etc. To
mark other numbers, we need to see how many times they multiply into any of
these distances. Since 23 = 2 · 2 · 2 = 8 and 24 = 2 · 2 · 2 · 2 = 16, we see that
the number 2 must be marked at a distance where three copies is less than the
distance marked 10, but 4 copies is more, so it must be somewhere between 1/4
and 1/3 of an inch. Since 26 = 64 and 27 = 128, we see that 6 copies of this
distance must be less than 2 inches, and 7 copies must be more, so it must be
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somewhere between 2/7 and 1/3 of an inch. By comparing further powers of 2
with other powers of 10, we can get better approximations of where exactly 2
should be marked on this slide rule, and similarly for each other number.

If we had grown up with only slide rules for measuring distance, we might
naturally think of distance concatenation in terms of multiplication. This might
have only been convenient if our system for writing numbers made multiplica-
tion as easy to calculate as addition actually is. Such a number system would
require us to deal with astronomical numbers when indicating the distance from
New York to Los Angeles, or perhaps we would have had a greater variety of
units than just inches, feet, and miles (or meters and kilometers). But had
we represented distances in this way, the actual fact that we discuss by saying
that New York to Chicago is about three times as far as Dallas to San Antonio
would instead by discussed by saying that New York to Chicago is about the
third power of Dallas to San Antonio.

1.3.2 Temperature

The situation for the representation of temperature has some similarities and
some differences to the situation for the representation of distance. We are
familiar with the idea that the degree Fahrenheit and the degree Celsius are
two arbitrary choices of unit on the temperature scale, just as the mile and
the kilometer are for distance. But with distances, there is a special distance
(namely that from a point to itself) that we represent with the number 0 on every
scale, as long as we measure distance additively. (On a slide rule, that distance
is marked with the number 1.) Our familiar everyday temperature scales instead
make different conventional choices of what temperature is marked as 0.

Just as comparison of rods, and concatenation of rods, are the real (or at
least, potential, in the case of long rods no one will ever make) features of the
world that govern the numerical representation of distances, there are some real
features of the world that govern the numerical representation of temperature.
For any two physical systems at equilibrium, if these two systems were to be
put in contact with each other, energy would flow from one system to the other,
but not the other direction.3 If energy would move from A to B, then we say
that A � B. As a matter of empirical fact, two copies of the same system would
not transfer energy in either direction, and if energy would transfer from A to B
and would transfer from B to C, then if A and C were in contact, then energy
would transfer from A to C.4

The feature of the world that corresponds to the unit of temperature is a
bit less familiar, but is approximately summarized by Newton’s Law of Cooling.
This law states that for any pair of substances (whether water and copper, cast

3From a statistical mechanical perspective, this is because the total energy of the two
systems is conserved, there are only a finite number of ways for energy to be distributed
among all the microscopic units of the two systems, and most configurations of the microscopic
units with a given total energy add up to a particular distribution of energy between the two
systems, which is generally not the distribution the two systems originally had.

4These features of the physical world basically correspond to the idea that systems always
tend towards an equilibrium, rather than moving in a perpetual cycle.
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iron and onions, or a human body and the air), the rate at which energy flows
from the warmer to the cooler is proportional to the temperature difference. A
human body at 102 degrees in a room that is 70 degrees will chill just as quickly
as a human body at 98 degrees in a room that is 66 degrees. A copper pot at
200 degrees will heat 70 degree water at the same rate that a copper pot at
300 degrees will heat 170 degree water. Coffee at 130 degrees in a 70 degree
room will cool off twice as fast as coffee at 100 degrees in a 70 degree room.5

If one can measure the rate of transfer of energy between a pair of substances,
then one can use this to mark off temperatures separated by the same distance
according to this law. Whatever reference pair was used to define this difference
then gets marked as a degree. If one is just measuring heating and cooling, the
choice of zero is arbitrary, and the size of the degree sets the scale of energy
flow for any given pair of substances.

However, temperature governs not just heat flow, but also the expansion
of gases, and the efficiency of engines that turn heat into work or vice versa
(whether through the use of expanding steam, exploding gasoline, expansion and
compression of freon, or conversion of solar radiation into electricity). Through
the work of the French engineer Sadi Carnot, and later work of William Thomson
(granted the title of “Lord Kelvin”, by Queen Victoria), it became clear that
the expansion of a gas, and the efficiency of an engine or heat pump, depend not
on the difference of two temperatures, but rather on their ratio, when expressed
in a scale with a suitable definition of 0 that we now call “absolute zero”, at
about -273 degrees C or -460 degrees F. As a result, there are two notions of
the relevant temperature difference. For purposes of figuring out how quickly
energy transfers between objects, -270 C is closer to 0 C than 1000 C is —
energy flows nearly four times as quickly from a source at 1000 C as it does to a
sink at -270 C. But for purposes of figuring out how efficiently an engine runs,
0 C is over a fifth of the way to 1000 C, while -270 C is only about a thirtieth of
the way to 0 C. Cooling the exhaust vent/intake valve of an engine can improve
efficiency more than increasing the temperature of the heat source.

For some purposes in thermodynamics, it turns out that it’s more useful not
to represent temperature even on the Kelvin scale with absolute zero, but in
terms of its reciprocal, sometimes called “coldness”. That is, while the melting
point of ordinary ice is at a temperature of about 273 Kelvin, we can say that
the coldness of this state is about .00366. Liquid nitrogen has a temperature
of about 77 Kelvin, and thus a coldness of about .013. Liquid helium reaches
a temperature of about 4 Kelvin, and thus a coldness of about .25. When
describing progress in low temperature physics, it might seem surprising to hear
just how much harder it is to get from 4 K to 1 K and then to .01 K and .000001

5A complexity of temperature difference that doesn’t exist for distance is the dependence
on the substance. The rate of energy transfer from water is much faster than that from air,
which is why (all temperatures in Fahrenheit) an 80 degree bath can feel cooler than an 80
degree room (because you’re losing energy to it faster) and a 120 degree hot tub can be deadly
while a 120 degree dry sauna is barely getting started (because water transfers energy to you
so much faster than air). With metal it’s even faster, which is why metal so often feels more
extremely cold or hot to the touch than the water it contains at the same temperature.
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K. But in terms of coldness, this is the progress from .25 to 1 to 100 to 1,000,000.
This representation helps make it clear why the third law of thermodynamics
says it is impossible to bring a system to absolute zero — this would involve
bringing its coldness to infinity!6

The fact that temperature and coldness are equally good numerical repre-
sentations of the same subject matter, and the fact that temperature differences
and temperature ratios both enter into important physical laws, are the two im-
portant analogies I want for degree of confidence. There is no disputing that
temperature is in some sense a real feature of physical systems.7 This feature is
appropriately described by fairly precise real numbers. However, the choice of
Fahrenheit or Celsius is an arbitrary convention. For some purposes, we can do
better by using a scale with absolute zero, like the Kelvin scale. But for those
purposes, there is still an arbitrary convention of using temperature rather than
coldness to describe the system. The information content is the same, though
they emphasize different sorts of difference.

1.3.3 Confidence

Degree of confidence has many of these same features. So far, when I have
represented degrees of confidence numerically, it has been with numbers that
satisfy the probability axioms. As discussed in Chapter 2, these are the numbers
that emerge when one describes the bet a person would consider fair in terms
of the price paid for a ticket that pays $1 if the relevant proposition is true. If
a race has three horses, A, B, and C, and one is equally confident that each
would win, then one shouldn’t be willing to pay more than about 33 cents for
a bet that pays a dollar if the given horse wins (because otherwise one would
be willing to buy tickets on all horses for more than the possible winning) and
one shouldn’t be willing to sell such a bet for less than about 33 cents (because
otherwise one would be willing to sell tickets on all three horses for less than
the amount one would foreseeably have to pay out).

However, if one actually goes to a racetrack to place bets on a horse, one
will usually find these prices listed quite differently. I am told that at racetracks
in continental Europe, one will find bets listed in terms of the payout for a

6From statistical mechanics, it becomes clear that in a system of interacting particles with
a given total amount of energy, there is an equilibrium distribution of what fraction of the
particles will have a given energy level. It can be calculated that there will be some constant
β such that the number of particles at energy level E will be proportional to e−Eβ , the
Boltzmann distribution. If β is larger, then many more particles are in low energy states than
high energy states. As β gets smaller, more particles enter higher energy states. When separate
systems individually in equilibrium are brought together, energy will flow from the system with
lower β to the system with higher β, which shows that β has the opposite ordering of the
characteristic comparison of temperature. It is an empirical fact that β times temperature
equals a constant, which is known as Boltzmann’s constant. Thus, β is a representation of the
coldness, which falls more directly out of statistical mechanics than temperature itself. For
more details, see Nash (1974).

7There are some limitations in that temperature only strictly applies to systems that
are internally in equilibrium, and that systems need to be large enough to have statistical
distributions in order to be characterized by temperature. But ordinary macroscopic systems
usually have these features.
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ticket that costs 1 Euro to buy. If the probability of horse A winning is 1/6, the
probability of horse B winning is 1/12, and the probability of horse C winning
is 3/4, then a European racetrack would represent the odds as 6.00, 12.00, and
1.33 respectively. However, at a British racetrack, the bets will be listed with
odds indicating the ratio of the respective risk of the bookie and the bettor
— if a ticket can pay 6.00 on a price of 1.00, then the bookie risks losing 5
units while the bettor risks losing 1 unit. Thus, at a British racetrack, the odds
would be represented as 5: 1, 11: 1, and 1: 3 respectively. American racetracks
represent these even more strangely. Bets on events with probability less than
1/2 are represented with positive numbers, while those with probability greater
than 1/2 are represented with negative numbers. Positive numbers represent
the possible profit on a bet that costs $100, while negative numbers represent
the cost of a bet that yields a possible profit of $100. Thus, for the same three
horses at the same probabilities, an American racetrack would list the odds at
+500, +1100, and −300 respectively, since a bet of $100 on horses A or B could
yield winnings of $600 or $1200 (and thus profit of $500 or $1100), and a bet of
$300 on horse C could yield winnings of $400 (and thus profit of $100).

These different odds listed at different racetracks form a real-life Leonard and
Maurice situation. They are representing the same underlying degrees of confi-
dence on different numerical scales. The significant question is what features the
underlying degrees of confidence have that are being equally well represented by
the three numerical scales. Distance must be stable under moving rigid rods, in
a way that preserves various features of comparison and concatenation, in order
to be properly represented by our ordinary additive scale, but then it is also
equally well represented by the multiplicative scale on a slide rule. Temperature
must be related in systematic ways to the transfer of energy and efficiency of
engines in order to make sense of the ordinary scales, but it can then also be
represented by coldness. To address Meacham and Weisberg’s concern about
interpersonal comparison of confidence, we need to understand this underly-
ing real feature of confidence in a way that lets us represent the confidences of
different people on the same scale.

And in fact, a version of this work was already done even before the general
work on measurement theory by Krantz et al. (1971). In his (1946), the physi-
cist Richard Cox gave a series of features that confidence must have in order to
be represented by probabilities, and he showed that any system that has these
features can be represented either by probabilities, or by any monotonic numer-
ical transformation of them like the European, British, and American odds.8 To
fully state Cox’s theorem requires the notion of conditional degree of confidence,

8Technically, Cox’s Theorem contains a missing step, but this has been clarified and fixed
by the computer scientist Joseph Halpern (1999a,b). Importantly, for the proof to work, for
every proposition that a person has a non-minimal degree of confidence in, there must be
another one that the person is less confident in while still being non-minimal. The set of
possible degrees of belief must be infinite in order to establish unique reference points at all
levels of the scale. This is no more problematic for finite beings like us than the fact that our
finite vocabularies allow us to express infinitely many sentences in our native language, and
that for every event, someone can consider the question of whether that event will happen
and also an independent coin will come up heads.
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which will be the subject of Chapter 6. But for now, it is sufficient to say that
Cox required basically just that there be some systematic way that one’s confi-
dence in a proposition is related to one’s confidence in its negation, and some
systematic way that one’s confidence in a conjunction A ∧B is related to one’s
confidence in A, and one’s conditional confidence in B, given A. Given such
systematic relations for a specific agent’s psychology, there is always a unique
way to represent her degrees of confidence on a probability scale, and a unique
way to represent her degrees of confidence on any other numerical scale that
one chooses to use. If we can justify Cox’s assertion of such systematic rela-
tions, then interpersonal comparisons are not a problem. Many physicists, like
Cox and Jaynes (2003), have just assumed that Cox’s assertions are “common
sense”, so there is no need to justify them, but I think there is some important
work to be done here.

This is how I see much of the work of the theorems from Chapters 2 and 3.
The role of confidence in guiding action, or in accurately representing the world,
should not be used to justify the specific use of the probability representation on
a scale from 0 to 1. Instead, it should be used to explain the systematic structure
of degrees of confidence and show that it can be represented on this scale,
though others also work. The representation theorem argument that Zynda,
and Meacham and Weisberg, consider does not by itself justify strong realism
about degree of confidence. But if we have reasons for thinking that there is
such a strongly real psychological state that guides one’s decision making, then
the representation theorem argument gives us a way to understand its structure
that justifies its measurement by probabilities, or by any of the other types of
odds scales that have been used in gambling.

If one instead takes closeness to the truth, as in Chapter 3, as the funda-
mental role for this psychologically real state, then the argument must work
differently. The argument attributed there to Joyce (and developed further by
Pettigrew and others) requires some very specific numerical features in a mea-
sure of accuracy, and argues that if one’s degrees of confidence do a good job of
being accurate, then they will satisfy the probability axioms. If the argument
as phrased by Joyce is correct, and accuracy really is measured in his way, then
it would be incorrect to represent degrees of confidence by the odds scales men-
tioned above. Since these scales are clearly reasonable, Joyce’s argument must
prove too much. There must be a way to weaken his assumptions, if the general
strategy is right.

And in fact there is. Lindley (1982) proved a more general theorem. Al-
though Lindley didn’t give the philosophical interpretation that Joyce did, his
theorem is more general. While Joyce made six very specific assumptions about
how accuracy should be measured, Lindley makes just a couple assumptions,
that are more general. The details aren’t essential to the argument here, but
there are two important features. One is that with his weaker assumptions,
Lindley is able to show not that degrees of confidence do satisfy the probability
axioms, but merely the claim proven by Cox that their scale can be converted
in a unique way to the probability scale. The second feature is that Lindley
needs a numerical scale for measuring accuracy (with assumptions about addi-
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tivity and differentiability), but gives no indication of what the numbers mean
in real terms. The considerations of this chapter show that the accuracy frame-
work needs better explanation of what the numbers really mean in order to be
considered a complete argument for probabilism.

There is another way to establish a numerical scale for confidence by consid-
ering Meacham and Weisberg’s second question of how much more confident one
is of one proposition than another. They claim that the sort of flexible numerical
representations considered here (where each form of odds is equally good as the
representation as probabilities) undermines meaningful ideas of comparing not
just confidences in propositions, but differences in confidence. I think this idea
of comparing differences in confidence is perhaps more subtle than they suggest.
But I think that one way of considering these differences leads to another nat-
ural use of measurement theory to produce numerical structure for degrees of
confidence.

1.3.4 Differences in confidence

As discussed by Fitelson (1999), there are actually a variety of different measures
of difference in confidence that have been proposed by Bayesians, even within
the probability representation by itself. If degree of confidence x is greater
than degree of confidence y, and degree of confidence y is greater than degree of
confidence z, then everyone agrees that the change from x to z is a bigger change
than the change from x to y or the change from y to z. The only case mentioned
by Meacham and Weisberg (Hosiasson-Lindenbaum (1940)’s influential Bayesian
treatment of the ravens paradox) happens to be a case of this form. But it is
harder to compare differences in confidence when the differences involve two
completely separate pairs of degrees of confidence.

For instance, in one study, 34% of 50 year old American smokers eventually
developed cardiovascular disease, while 27% of nonsmokers did. (Lloyd-Jones
et al., 2006) In another study, 5.2% of male Polish former smokers died of lung
cancer, while 1% of Polish men who had never smoked did. (Brennan et al.,
2006)9 To simplify calculations, I’ll treat the change in cardiovascular disease
as 33.3% to 25%, and the change in lung cancer from 5% to 1%. In terms of
probability, the change in cardiovascular disease was about 8%, while the change
in lung cancer was only 4%, so you might say that the particular observations
yielded twice as large an effect for smoking as for lung cancer. However, smoking
brought the odds of getting cardiovascular disease from 3: 1 to 2: 1, it brought
the odds of lung cancer from 99: 1 to 19: 1. It is also common to report changes
in terms of ratios rather than differences. The ratio of probabilities (reported
in medical journals as a “risk ratio”) in the cardiovascular disease study is 4/3,
while the ratio of probabilities in the lung cancer study is 5/1. And the odds
ratio in the cardiovascular disease study is 3/2 while the odds ratio in the lung

9Numbers were much higher for people who continued smoking throughout their lives,
ranging from 17% in Russia to 82% in Slovakia. The rates of lung cancer in non-smokers in
these Eastern European countries were apparently also higher than the rate of 0.2% often
observed in the UK or US. I chose the examples I did for convenient numerical values.
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cancer study is about 99/19 ≈ 5.2. On either the risk ratio or odds ratio
measure, lung cancer was much more affected by smoking than heart disease.

It’s not clear to me that there is a univocal answer to which difference should
be treated as larger. So I think we shouldn’t give in to Meacham and Weisberg’s
demand to produce a clear distinction between “greater” confidence and “much
greater” confidence. Some Bayesians (Christensen, 1999, Vassend, 2018) have
suggested that these different measures should be used to compare changes in
different contexts. The difference in probabilities may be the more relevant
numerical measure of change for purposes involving action plans, while other
measures might be better for other purposes. However, as I’ll show, there’s at
least some sense in which the odds ratio (or perhaps better, the logarithm of
the odds ratio) is a natural measure for the amount of evidence one has. This
may also give another way to say what is real in degree of confidence to get
a quantitative treatment started through measurement theory separate from
either the decision theory or accuracy frameworks mentioned so far.

Consider a situation in which one is investigating a trick coin from a magic
shop. One knows in advance that some coins from the shop are biased with
a 2/3 chance of landing heads, and the rest are biased with a 2/3 chance of
landing tails.10 Whatever initial degree of confidence c one has for the coin
being biased towards heads, the probability of getting heads on all of the first
n flips is c · (2/3)n + (1 − c) · (1/3)n. While the posterior probability for the
coin being biased towards heads is somewhat awkward to calculate, the odds
ratio is quite straightforwardly 2n times what it started with. Each tails flip
one observes divides the odds ratio by the same amount. Thus, the logarithm of
the odds ratio counts the number of observations of independent coin flips one
would need to become equally confident in the coin being the other way from
how it is now.

Thus, we can imagine setting up a quantitative notion of measurement for
amount of evidence just as we did for distance initially. Instead of comparing
distances between pairs of points AB and CD, we can compare distance between
propositions (P,Q) and (R,S) in this evidential sense. For distance, we have
to imagine a pair of hypothetical rigid rods stretched between AB and CD,
and imagine sliding them towards each other to compare which is longer. For
evidence, we have to imagine a pair of hypotheses like the ones about biased
coins, and figure out whether the number of independent observations needed
to bring it from the confidence one has in P to that of Q would be more or
less than the number of independent observations needed to bring it from the
confidence one has in R to that of S.

Concatenation of evidence is simple in the case of pieces of evidence that
are independent conditional on each hypothesis. When pieces of evidence aren’t
independent, we have to imagine replacing them with ones that are independent,
just as when pairs of points aren’t collinear, we have to imagine straightening out
the rods so that they are lined up. If these evidential analogs of the movements

10Though see Gelman and Nolan (2002) for an argument that such trick coins are actually
impossible!
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of rigid rods can be made sense of, then we can directly choose some unit of
evidence and get a ratio scale for it in the same way that Krantz et al. (1971)
gets a scale for distance. This could be another route to measurement theory for
degrees of confidence if one can make sense of the relevant notion of comparative
evidence without already having the mathematics of probability theory. In fact,
something like this discussion was given by I.J. Good and Alan Turing in their
early wartime work on codebreaking, though it was’t published until much later.
(Good, 1985) Interestingly, Vassend (2015) gives a very different argument that
the logarithm of the change in the odds ratio is the only confirmation measure
that behaves well from a measurement theory perspective.

To summarize, I think it’s not clear what the best measurement theoretic
foundations are for degree of confidence. However, several good starts are avail-
able. In any case, Zynda’s worry about alternative numerical representations is
not a worry for the strong realism of degree of confidence — it is a universal
feature of all numerical quantities, whether psychological or physical. Meacham
and Weisberg’s worries about these numerical representations can be addressed
if good foundations for the measurement of confidence are available. Each per-
son’s degrees of confidence will have a unique representation as a probability
function (and also a unique representation as British odds, or European odds,
or American odds), and this representation will suffice for interpersonal com-
parisons of confidence. Comparison of differences of confidence works fine in
the one case that is most pressing (that of saying when one piece of evidence is
stronger than another for the same proposition), while in other cases there may
not be a univocal notion. But there may be a measurement theoretic foundation
for a notion of confirmation that uniformly answers that challenge as well, based
on the odds ratio.

2 Psychology

Another sort of challenge to numerical degrees of confidence comes from Har-
man (1986) and Holton (2015). The basic idea of both authors (which others
have supported) is that although it might be nice for some sort of epistemic
agent to have degrees of confidence that obey something like the axioms of
probability theory, it would be just too complicated for finite agents like us.
Belief and intention are neither mere simplifications of an underlying confidence
and expected value structure, nor are they supplements to it in special cases.
Rather, they argue that most of our epistemology is constituted in full beliefs
and intentions, with only a small role for degrees of confidence.

Bayesianism is not only a theory of the human mind. It is a theory of
reasoning that is meant to be normative for humans, but also for groups like
the scientific community as a whole, and for artificial or alien intelligences.
This objection though, is targeted specifically at humans. It does not threaten
Bayesianism as a theory of scientific reasoning for a community, or as a model
for artificial intelligence, or as a conjecture about potential aliens we might some
day encounter.
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A full evaluation of the force of these arguments about humans would require
detailed empirical investigation of the human mind that neither they nor I are
in a position to carry out. My response to all of these arguments will take the
form of arguing that the human mind has a lot more computational capacity
than we consciously use, and this unconscious ability may well be sufficient to
implement a sort of Bayesianism. Whether the human mind in fact does is an
empirical question that will take a lot more research, but even if not I claim that
a Bayesian mind would not be as different from the human mind as Harman
and Holton suggest.

Harman’s objection is that properly working with degrees of confidence is too
difficult because of the number of different propositions one must work with. As
I will describe in Chapter 6, the standard Bayesian picture for how one’s degrees
of confidence change over time requires that one have degrees of confidence in
every conjunction of a proposition with potential evidence. If every proposition
could possibly be learned, then that means that one needs to have a degree of
confidence in every truth-functional combination of propositions one considers.
Harman points out that this leads to a “combinatorial explosion” — with 10
basic propositions, there are 1024 truth-functional combinations, while with 20
there are over a million, and with 30 there are over a billion. He argues that
having this many degrees of confidence would be far beyond the capacities of
the human brain.

I think this claimed limitation on the human brain is quite unclear. The
brain itself is quite complex, and well beyond our current understanding of
it. We don’t know what limitations it has. How many names do you know?
Think of all the names of your friends and family, including “friends” that are
merely connections on social media. How many more names do you know of
celebrities, artists, philosophers, historical figures? Add to that all the people
that you may have gone to school with, whose name you would recognize if
you saw it in the right context, or local business owners that you’d recognize in
combination with the name of their business. There are probably thousands, or
even tens of thousands of such names. Is there any reason to believe that your
brain is anywhere close to the limit of names you could know? With billions
of neurons and who knows how many connections between them, there’s no
particular theoretical reason that it couldn’t store simply astronomical amounts
of information. Furthermore, nothing about the Bayesian idea requires these
degrees of belief to be stored independently of each other — perhaps the brain
works in some sort of compressed way, where degrees of belief in many related
propositions are stored in some unified way that doesn’t require each one to have
its own separate representation. Stereotypes, biases, and heuristics are among
the ways that we store many degrees of confidence with only a small amount of
cognitive power.

While Harman thinks it a priori unlikely that humans could have minds
powerful enough to deal with the large numbers of degrees of confidence involved
in Bayesian reasoning, Holton thinks that there are reasons to believe that we
don’t have degrees of confidence (or “credences”) of this probabilistic sort. He
says, “the mental states involved here are nothing like credences. They do
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not typically register anything like numerical degree of probability; we cannot
manipulate them; they do not obey anything like” the mathematical rules they
are said to obey. He says, “It is possible that people had been entertaining
and manipulating credences for millennia . . . without realizing what they were
doing, but it strikes me as implausible.” The mathematics of probability theory
is complex and difficult, and was only developed in the past few centuries.
Holton suggests that therefore this can’t be the sort of math that is going on in
our minds.

I think this argument is based on a mistake like that of Zynda in arguing
against strong realism. Both of these arguments seem to think that a strong
realist view of an aspect of thought requires that we be aware of this aspect
of thought. However, it’s clear that there are many features of our mental
life that we aren’t directly aware of. Psychologists claim to have discovered
many phenomena of the human mind — cognitive dissonance, confirmation
bias, risk aversion, REM sleep. It seems quite plausible that people’s thoughts
had exemplified these phenomena for ages without realizing what they were
doing.

This is true even for some quite complicated numerical phenomena. The hu-
man visual system is capable of quite complicated calculations. When trying to
catch a ball thrown in a high arc, a person trying to catch the ball must predict
where it will end up, which (according to Newtonian physics) involves comput-
ing a second-order differential equation, or at least tracing out a parabolic arc.
However, people were able to catch thrown objects long before ancient math-
ematicians worked out the concept of a parabola, which itself happened long
before early modern physicists argued that a parabola was the trajectory of a
falling object. We don’t need to be aware of a mathematical feature of our mind
in order for it to work mathematically. This is perhaps even clearer for features
like blood pressure, blood sugar, and neuron excitation, which can be observed
to affect (or perhaps even constitute) thinking in a variety of ways, and are
precisely numerical, but are very difficult11 for people to introspect.

Holton further argues that not only are we not aware of any probabilistic
reasoning, but in fact we do quite badly at it in many cases when it is made
explicit. “If we are to be good subjects for the ascription of probabilistic atti-
tudes, then we should be able to make the kinds of transitions — whether in
beliefs or in behaviour — that would be expected. Yet a host of now very fa-
miliar research shows that, in many cases, we are very bad at this.” (For many
examples of this research, see Kahneman (2011).) The example Holton focuses
on is the following:

The probability that a woman has breast cancer is 1%. If she has
breast cancer, the probability that a mammogram will show a pos-
itive result is 80%. If a woman does not have breast cancer, the
probability of a positive result is 10%. What is the probability that
a woman who has a positive mammogram result has breast cancer?

11Though not impossible — people often become aware of their “blood boiling” as blood
pressure increases, or the sensation of getting “hangry” from low blood sugar.
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As he notes, the mathematics of probability says that the probability of having
breast cancer given a positive mammogram result in this case is less than 10%,
but most people will answer that the probability is quite a bit higher.

However, this example seems to me irrelevant to the question of whether
the mind works probabilistically. Consider a parallel case involving a physics
problem:

The velocity of a thrown baseball is 6 m/s at an angle of 60 degrees
upwards from the horizontal. The acceleration due to gravity is 9.81
m/s2 downwards. How far will the ball travel by the time it has
fallen down to the same elevation from which it was thrown?

If you’re anything like me, this question will be even harder to answer correctly
than the question Holton considers. However, if we were actually to be in the
situation described, rather than reasoning about it in the abstract, we would
probably do pretty well at trying to catch the ball. It is extremely difficult to
take a verbal description of probabilities, or velocities, and translate it into our
credal or visual system, and then translate the answer we receive there back
into numerical form. But this doesn’t seem to me to give any reason to doubt
the existence of some quantitative representation of these things in the mind.

When looking at a scene of people running around a playground, and throw-
ing balls, one can see which people and objects are located closer or farther,
which are taller or shorter, and which are moving faster or slower. But when
asked to give numerical descriptions of the heights, distances, and speeds, one
is unsure. Conversely, when looking at this scene and trying to imagine a 6 foot
high person throwing a ball at 20 miles per hour, one is unsure quite how this
would compare with everything else one sees. But if one in fact saw the person
throwing that ball, it wouldn’t be hard to catch. Similarly, when considering
the uncertainties in your daily life, you have some sense of whether it’s more
likely that you will get stopped by a red light, or that the store will be out of
yogurt, or that you will encounter your neighbor on the way out of the house.
When asked to imagine a 20% chance of rain, you’ll be unsure which of these
events are more or less likely than it. But when presented with clouds with a
particular distinctive look (that happens to be the look of 20% chance of rain
in the next hour), one might do better.

The response I give here invites another challenge that is different from
the one Holton makes. He raises worries about bad explicit reasoning with
probabilities, which I think is no worry at all for there being a mental fact
about the strength of confidence that is probabilistic. But there are also some
well-known biases and errors that people make even when reasoning natively
with confidence. People tend to feel a greater risk of crash when flying in a
commercial airplane than they do when driving. And yet, as a matter of fact,
there is a far greater risk of a crash when driving than flying.

This I think does point to a real inaccuracy in the confidence with which we
hold various beliefs. But I think this is no more problematic than various visual
illusions we are vulnerable to. Just because we are bad at turning our visual
impressions of trees or buildings into correct verbal expressions of the height of
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those trees and buildings doesn’t mean that our visual impressions fail to have
quantitative structure that represents those heights in ways that behave like
heights. Furthermore, in many cases, the visual and cognitive illusions we fall
prey to are approximations that our mind uses to quickly and conveniently repre-
sent the world in ways that are usually fairly accurate, but have some systematic
flaws. Our visual system has well-known illusions like the Müller-Lyer illusion,
in which a line appears shorter when bookended with inward-pointing hooks,
and longer when bookended with outward-pointing hooks. But as it turns out, in
ordinary observations of three-dimensional scenes, lines bookended with inward-
pointing markings do tend to be images of shorter objects than lines bookended
with outward-pointing markings. (Howe and Purves, 2004) This is a useful
heuristic that usually improves our estimate of lengths of three-dimensional ob-
jects, but tends to lead us astray when looking at two-dimensional drawings.
Similarly, the various means by which we come to have greater or lesser degrees
of confidence may do well in ordinary reasoning, even if they do badly in certain
parts of the modern world with its novel media and information environments.
(For more on these visual and cognitive illusions, see Chapter 8.)

A lot of mathematical sophistication is needed for doing detailed reasoning
about degrees of confidence. But one doesn’t need this mathematical sophisti-
cation to have them. One has a height, and a neural structure, and a whole
cognitive structure of beliefs and desires with their logical relations to one an-
other without having to be aware of it. Just as Molière’s “Bourgeois Gentleman”
was speaking prose his whole life without having realized it, I claim it is quite
possible that we have been reasoning probabilistically with degrees of confidence
our whole lives without realizing it. Our minds are in many ways quite a bit
more sophisticated than we are explicitly aware of, and this may be another
such way.

3 Imprecision

One last challenge to the claim that we really have degrees of confidence that are
probabilistic is the idea that it is implausible that our degrees of confidence are
quite so precise. There are a continuum of real numbers between 0 and 1, and it
might seem odd that our finite minds can occupy those states so precisely. Many
theorists have been motivated by the idea that although degrees of confidence
might be like probabilities in some way, they can’t be fine-grained enough to
actually be probabilities, even in the attenuated sense suggested here.

Much recent philosophical literature on this idea suggests thinking of de-
grees of confidence not as individual real numbers, but instead as sets (usually
intervals) of real numbers. (See, for instance Sturgeon (2008) and the reply by
White (2009); Hájek and Smithson (2011); Elga (2010) and the reply by Moss
(2015); and Schoenfield (2016).) Some of this literature recapitulates an earlier
debate. (Levi, 1974, Jeffrey, 1984, Levi, 1985), in which Jeffrey suggests that it
may be hard to pin down a precise number that represents a particular person’s
degrees of belief, while Levi suggests that degrees of belief may even behave in
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more “indeterminate” ways that don’t correspond to any number. There are
several different motivations that may lead us to study theories of confidence
that don’t work like precise real numbers. (Many such theories are described
by Walley (1991).) But I will address one prominent style of arguing for this.

Miriam Schoenfield gives the following case:

Detective Confuso

You are a confused detective trying to figure out whether Smith or
Jones committed the crime. You have an enormous body of evidence
that you need to evaluate. Here is some of it: You know that 68 out
of the 103 eyewitnesses claim that Smith did it but Jones’ footprints
were found at the crime scene. Smith has an alibi, and Jones doesn’t.
But Jones has a clear record while Smith has committed crimes in
the past. The gun that killed the victim belonged to Smith. But the
lie detector, which is accurate 71% percent of the time, suggests that
Jones did it. After you have gotten all of this evidence, you have
no idea who committed the crime. You are no more confident that
Jones committed the crime than that Smith committed the crime,
nor are you more confident that Smith committed the crime than
that Jones committed the crime. (Schoenfield, 2012)

The important point she raises about this case is that it exhibits “insensitivity
to mild sweetening”. If you were equally confident that Smith committed the
crime as Jones, then if a single extra eyewitness testified that Smith did it, you
would now lean towards Smith. However, from the construction of the case, it
seems clear that you would be just as confused and exhibit the same indecision
between the two even with the additional eyewitness.

However, I think that when we compare this sort of case to other sorts of
features that we unhesitatingly report with precise real numbers, we can get
a better understanding of how to think of them. Consider the height of a
building. In 2009, the highest point in any building in the world was the tip of
the Willis Tower (formerly Sears Tower). The Willis Tower is 527 m (1729 ft)
high. However, if you look closely, the tip consists of two antennas that extend
from the top, which had been replaced in 2000. If you only count the top of the
architectural space, it is only 442 m (1450 ft), while Taipei 101 is 509 m (1671
ft) high. Looking more closely still, you’ll note that the top of Taipei 101 is an
architectural spire that is not itself occupied. Its highest occupied floor is only
at 438 m (1437 ft), while the Shanghai World Financial Center has its top floor
at 474 m (1555 ft). (Willis Tower’s is only at 412 m (1354 ft).) Which building
was actually the tallest in 2009? There’s a case to be made for each of them.
Increasing or decreasing the height of any of these buildings by a few meters
wouldn’t change this confusion and indecision.

This is one way I claim that indeterminacy about confidence could result.
Just as it is vague which part of a physical object is part of a building for the
purpose of determining its height, it could well be vague which aspect of her
mental life is an agent’s degree of confidence in a proposition. (These were
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all surpassed by the Burj Khalifa in 2009, which is currently the tallest on all
measures — tip and architectural roof at 828 m (2717 ft), and top floor at 584
m (1918 ft).)

Even once we have determined which features count for determining the
height of a building, there is vagueness at a more fine-grained level. The steel,
glass, concrete, paint, etc. that make up a building have surfaces that are con-
stantly weathering and changing their structure at a molecular level. And the
molecules themselves have indeterminate boundaries in their electron clouds
(and at a much smaller scale, in their nuclei as well). The wavefunction may
be defined in a perfectly determinate way, and features like heights can still be
indeterminate.

However, on another level, the height of a tall building is variable over the
course of a day, due to slight changes in size of metal spires as they heat and
cool, and due to slight swaying in the wind (particularly when large storms
come through). Thus, any report of the height of a building, if it is particularly
precise, must be a report on the height at a particular moment in time, or the
average height over a standard time period.

Similarly, degrees of confidence are presumably constantly fluctuating in real
people. When considering the Detective Confuso case, I think it is natural to
think that one goes back and forth as to which suspect is more likely to be
guilty. This “going back and forth” might naturally be described by saying
that one has degrees of confidence at each moment, but as one brings different
aspects of the evidence to attention, one’s degrees of confidence fluctuate up
and down. Furthermore, shifts in blood sugar level, temperature of the room,
blood pressure, and environmental factors, can often lead to shifts in attitude
(regardless of whether or not these shifts are rational). Some of the fluctuation
is due to attention to evidence, and other parts of it are due to factors that
don’t have any subjective presence. If this fluctuation is fast enough and large
enough, it can give rise to cases that feel like the Detective Confuso case. At
one phase in reasoning, one’s degrees of confidence in each suspect being guilty
fluctuate up and down past each other. After gaining some new evidence, it
may be that one of them fluctuates around a slightly higher level than before,
but they still pass each other quite regularly.

This fluctuation of confidence may be merely slightly variable, like the height
of a building, or much more variable, like the depth of the water in an ocean
with waves and tides, or the height of the trees in a forest as they sway in the
breeze, or the height of the grasses in a field as they tremble in a storm. It may
be slightly misleading to represent the height of a tree in centimeters, or the
depth of the grasses in a field in millimeters. But there is in fact some fraction
of a second in which one truly can say that the depth of the grass was exactly
543 mm (at least, up to the resolution of the surface of the solid molecules).
Similarly, I claim that in many of these cases, it may well be true that at each
moment, one has specific degrees of confidence that can be described with a
precise real number, but since one’s confidence is shifting so unsteadily, just a
few seconds of thinking about the example can make it seem like there is no
fact of the matter about which proposition one is more confident in.
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Degrees of confidence may have some sort of vagueness of each of these sorts
— they may be indeterminately constituted by components that themselves
have indeterminacy (like whether the height of a building includes the spire),
and they may have some sort of stable or unstable variance over short time
periods (like the height of the grasses on a windy prairie). It may still be useful
to describe them numerically in fairly precise ways, whether it is the way we
say the Burj Khalifa is 828 m high, or only the way surfers might say that
(as I write this), the wave forecast for Santa Cruz is 4-6 ft high today and 6-8
ft high two days from now. Setting up numerical degrees of belief by means
of a representation theorem from measurement theory doesn’t guarantee that
they are more precise than the surf conditions at a time (which themselves are
measured by meter sticks that satisfy the assumptions of their own measurement
theoretic representation theorem), but it is surely open to empirical verification
whether they are more like that, or more like the heights of buildings.

Research Questions

1. Is there a measurement theory for degrees of confidence and desire that
can underlie the strong realist notions, or must one be a weak realist and
construct them out of preferences?

2. Can one give a measurement theory for accuracy that will underlie the
scoring rules used in Chapter 3?

3. Can a measurement-theoretic foundation for degrees of confirmation pick
out the odds ratio, or are there different purposes served by different
measures?

4. Can a weak realist about degree of confidence give a good measurement
theory for degree of confirmation?

5. Does cutting-edge empirical psychology support or undercut the idea that
the unconscious mind works probabilistically? (For an example of work
that begins to address this question, see Goodman et al. (2015).)

6. Are there cases where the idea of precise numerical confidence breaks down
in ways that can’t be captured by the fluctuation picture?

References

Brennan, P., Crispo, A., Zaridze, D., Szeszenia-Dabrowska, N., Rudnai, P., Lis-
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