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1 What you know, and what you should know

Hold off on probabilities for a moment. Start with two modalities, what an agent knows

and what she should know, given her evidence and abilities. Write Kp for the claim that

she knows p, and Sp for the claim that she should know p.

Model these as standard modal operators, using a bimodal Kripke frame 〈W,K,S〉
(Hintikka 1962; Kripke 1963). W is a (let’s suppose finite) set of states or possible

worlds. K and S are each binary relations on W . Kw := {x ∈ W |wKx} is the set of

worlds accessible from w under K, and likewise Sw := {x ∈ W : wSx}. We’ll use K to

define the K(·) operator, and S to define the S(·) operator.

In particular, propositions (or events) are modeled as subsets of W ; p ⊆ W is

true at w iff w ∈ p, ¬p = W \ p, p ∧ q = p ∩ w, etc. For any proposition p ⊆ W ,

Kp := {w ∈ W : Kw ⊆ p} is the proposition that p is known; it’s true at a world

w iff all worlds that are K-accessible from w are p-worlds, false otherwise. Likewise,

Sp := {w ∈W : Sw ⊆ p} is the proposition that p should be known; it’s true at a world

w iff all worlds that are S-accessible from w are p-worlds.

Our agent will be presented with a word-completion task: a string of letters and

some blanks. She will be given 5 seconds to look at it, and she will have to say how

confident she is that the string is completable. For example she may see a string like

this:

EAR T

In which case the answer is ’yes’, because ‘learnt’ is a word. Or she may see a string

like this:

P G ER
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1. WHAT YOU KNOW, AND WHAT YOU SHOULD KNOW

And the answer is ’no’, because no English word completes that string.

Suppose she is presented with EAR T. Then, right after being presented with the

string but before having any time to think about it, there are three relevant epistemic

possibilities (worlds) for her. Maybe there’s a word and she’ll find it after 5 seconds

(a). Maybe there’s a world and she won’t find it after 5 seconds (b). Or Maybe there’s

no word (and she won’t find one after 5 seconds) (c). (We (now) know that c is not

actual—there is a word, since ‘learnt’ is one. But she doesn’t know that before having

any time to think; so c is an epistemic possibility for her at this point; it’s a possibility

wherein fact ‘learnt’ isn’t word, and therefore there’s no completion to EAR T.)

Now consider her epistemic state after 5 seconds of looking at the string, right when

it disappears. What will she know? That depends on which possibility she’s in. After

all, she’ll know whether she found a word or not. Let’s suppose she knows nothing more

than this. Then her knowledge-state after looking at the string for 5 seconds can be

represented with the following partial frame 〈W,K〉, where black arrows represent K-

relations and therefore what’s consistent with her knowledge in the various possibilities:

a

bc

No Word Word

Find:

Don’t Find:

String = EAR T

Figure 1: What she knows in the word-completion task.

Thus at a she knows that she’s at a, while at c and b, all she knows is that she didn’t

find a word. Thus K(Word) is true at a and false at the other two possibilities. K(Find)

is true at a, and K(¬Find) is true at the other two.

What about what she should know after 5 seconds of looking at the string? Again,

that depends on what possibility she’s in. But, we may suppose, it depends even more.

After all, it’s possible that what she should know outstrips what she does know. Some-

times she makes mistakes; sometimes she fails to use all her relevant evidence. In

particular, her lexicon encodes the information that ‘LEARNT’ is a word, and therefore

she is in a position to know—she should know—that the word is completable, if in fact it

is. If ‘learnt’ is a word but she doesn’t find it, then she knows less than the should—she

2



1. WHAT YOU KNOW, AND WHAT YOU SHOULD KNOW

should know that although she didn’t in fact find one, there is one. (If she properly used

her lexical evidence, that’s what she would conclude: “Ah, there is one, but I didn’t

find it in 5 seconds.”) On the other hand, if ‘learnt’ is not a word (c is actual), then

she’s not in a position to know it’s not. After all, her powers of word-identification are

limited. The task is, intuitively, semi-decidable for her within 5 seconds. If there is a

word, she should know that there is. But if there’s not, she shouldn’t (can’t) know that

there’s not. Even if she properly uses all her lexical information, if c is actual, then she

won’t find one—but she can’t know whether her failure to find one was because there

isn’t one (c is actual), or because there is one that she in fact missed (b is actual).

Thus we can represent what she should know with the following partial frame 〈W,S〉,
where red arrows indicate S-relations and, therefore, what she should know in the

relevant possibilities:

a

bc

No Word Word

Find:

Don’t Find:

String = EAR T

Figure 2: What she should know in the word-completion task.

Thus at a she should know she’s at a: S(Find) and S(Word) are both true. At b, she

should know that she didn’t find one in the relevant time (S(¬Find) is true) but that in

fact there is one (S(Word) is true). At c, she should know she didn’t find one (S(¬Find)

is true), but she shouldn’t (can’t) know whether there is one: ¬S(¬Word) is true. Since

every possibility is one where if there’s a word, she should know it (Word ⊆ S(Word)),

it follows that at c there is a failure of negative introspection on the modality S. (As

seen from the fact that S is not euclidean: cSb, but b 6S c.) Thus at world c, ¬S(Word) is

true, but so is ¬S¬S(Word): she should not know there’s word, but she shouldn’t know

that she shouldn’t know there’s a word (for all she can know, perhaps she should know

there is). She know she didn’t find one—but she also knows that if there is one, she

should find it (her failure to find one was an error); if not, she shouldn’t.

We can then combine the two models to model both what she does know and what

she should know after 5 seconds (see page 4).
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a

bc

No Word Word

Find:

Don’t Find:

String = EAR T

Figure 3: What she should know in the word-completion task.

Thus we can say that, e.g. at c, she knows that she doesn’t know there’s a word—

K(¬K(Word))—but for all she knows, she should know there’s a world—¬K(¬S(Word)).

Thus she doesn’t know whether what she knows lines up with what she should know:

¬K(K(Word)↔ S(Word)).

Thus we can represent her (higher-order) epistemic states easy enough: what she

knows about what she knows, and what she should know about what she should know

(and, indeed, what she knows about what she should know, and what she should know

about what she knows) can all be represented with a bimodal Kripke frame.

2 Adding probabilities

If you’re okay with what I’ve said so far, adding probabilities (and, therefore, higher-

order probabilities) is simple. Let ‘C(p)’ be her actual credence in p, whatever it is;

let ‘P (p)’ be the credence in p she should have, whatever it is. These are definite

descriptions for numbers (i.e. they are random variables), so the values they give vary

across worlds. At some worlds, C(Word) = 1; at others, perhaps C(Word) = 1
3 .

Model these as probabilistic modal operators, using a bimodal probabilistic Kripke

frame 〈W, C,P〉 (compare Gaifman 1988; Samet 2000). W is again a (let’s suppose

finite) set of worlds or states. C and P can now be thought of as graded accessibility

relations, which assign a non-negative weight to each pair of worlds 〈x, y〉, Cx(y) and

Px(y). The weights from a given world must sum to 1: for any x ∈W :
∑

y∈W Cx(y) = 1

and
∑

y∈W Px(y) = 1. Equivalently, C and P can be thought of as functions from worlds

x to probability functions Cx and Px defined over the subsets of W : for any x ∈W and

q ⊆ W : Cx(q) =
∑

y∈q Cx(y), and likewise Px(q) =
∑

y∈q Px(y). Whereas ‘C(q)’ above

was a definite description for a number (i.e. was a random variable), ‘Cx(q)’ is a a rigid
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designator for a number. (That is, C(q) varies across words; Cx(q) does not.) We can

use C and P to define the C(·) = t and P (·) = t propositional operators.

In particular, for any world x, think of Cx as our agent’s actual credence function

at world x. Likewise, think of Px as the credence function our agent should have at

x—the one they would have, were they to properly use their evidence. Since our agent

has different opinions and evidence at difference worlds, we may well have Cx 6= Cy for

x 6= y, and likewise Px 6= Py.

This then allows us to define propositions about the agent’s actual credences, as

well as the credences they should have, as propositions (sets of worlds) in the frame. In

particular, for any proposition q ⊆ W and t ∈ [0, 1], [C(q) = t] := {w ∈ W : Cw(q) = t}
is the proposition (set of worlds) at which C assigns credence t to q, i.e. the agent’s

actual degree of confidence in q equals t. Likewise, [P (q) = t] := {w ∈ W : Pw(q) = t}
is the proposition (set of worlds) at which P assigns t to q, i.e. the agent should assign

degree of confidence t to q.

Now let’s apply this to our word-completion model. A natural model of the agent’s

credences in this situation says this: her prior credences in the various possibilities

(the ones she had right after she saw ‘ EAR T’ but before she had time to think)

assigned some numbers to the various possibilities—say 1
2 probability for the No-Word-

No-Find possibility (c), 1
4 for the Word-No-Find possibility (b), and 1

4 for the Word-Find

possibility (a).1 Then her actual credences at w, Cw are recovered by conditioning this

prior on what she knows according to the model above, i.e. on whether or not she

found a word. (Formally, for all w ∈ W : Cw = P0
w(·|Kw), where P0

w is her prior and

Kw = {x ∈ W |wKx}, as above, is the strongest proposition she knows at w.) And the

credences she should have at w, Pw, are recovered by conditioning this prior on what she

should know according to the model above. (Formally, for all w ∈ W : Pw = P0
w(·|Sw),

where P0
w is her prior and Sw = {x ∈ W : wSx}, as above, is the strongest proposition

she should know at w.)

If so, her posterior actual credences in the various possibilities are represented by

the frame in Figure 4.

Thus [C(Word) = 1] = {a}, i.e. a is the only world at which she’s certain there’s a

word. Meanwhile [C(Word) = 1
3 ] = {b, c}, since at both b and c she assigns 1

3 credence to

possibilities in which there’s a word (i.e. to b). Now, since we’ve identified [C(Word) = 1
3 ]

as a set of worlds in the frame, and her credences are always distributed over such

worlds, it follows that she assigns credences to facts about what her credences are.

In particular at world c she is certain that she is 1
3 confident that there’s a word:

Cc([C(Word) = 1
3 ]) = Cc({b, c}) = 1. Likewise at b. Meanwhile, at a she is certain that

she assigns credence 1 to there being a world: Ca([C(Word) = 1]) = Ca({a}) = 1. Thus

1For simplicity, I won’t represent these priors formally in the model; but we of course could by
adding a constant function from worlds to probability functions P0 such that for all w ∈ W : P0

w(a) =
P0
w(b) = 1

4
and P0

w(c) = 1
2

.
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a

bc

1

1
3

2
3

2
3

1
3

No Word Word

Find:

Don’t Find:

String = EAR T

Figure 4: What her actual credences are in the word-completion task.

the proposition that she’s certain that she assigns credence 1
3 to there being a world is

true at worlds b and c:

[C([C(Word) = 1
3 ]) = 1] =

{w ∈W : Cw([C(Word) = 1
3 ]) = 1} =

{w ∈W : Cw({b, c}) = 1} =

{b, c}.

Likewise, for even higher-order claims as well: the proposition that she assigns credence

1 to the proposition that she assigns credence 0 to the proposition that she assigns

credence 1 to there being a word is true at b and c in this frame:

[C([C([C(Word) = 1]) = 0]) = 1] =

[C([C([C({a, b}) = 1]) = 0]) = 1] =

[C([C({a}) = 0]) = 1] =

[C({b, c}) = 1] =

{b, c}

So identifying claims about credences with sets of worlds allows us to “unravel” any

iterated higher-order probability claim to just be a claim about credences assigned to a

set of worlds. This is as it should be. When you have credences, you distribute them

over possibilities. And in those possibilities, there are facts about what credences you

have. Therefore, when you have credences about what credences you have, those are

simply credences about which possibilities you’re in.

But so far, such higher-order credences are, in a sense, trivial: since in the above
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frame actual credences are fully introspective, we have that for any q, t: [C(q) = t] ↔
[C([C(q) = t]) = 1] is true at every world.

Now turn from what our agent’s credences are, C, to what they should be, P . Here

we will get failures of introspection and therefore nontrivial higher-order probabilities.

As said above, the credences she should have are obtained by conditioning her prior

distribution on what she should know. As seen in Figure 2, at a she should know she’s

at a; at b she should know she’s at b, and at c she should know that she’s either at b or

c. Thus Figure 5 is what her credences should be (given what she should know) in the

various possibilities:

a

bc

1

12
3

1
3

No Word Word

Find:

Don’t Find:

String = EAR T

Figure 5: What her credences should be in the word-completion task.

Thus [P (Word) = 1] = {a, b}, i.e. at both worlds a and b she should be certain

(should know) that there’s a word. (If she were to properly use her lexical evidence, she

would become certain there’s a word.) Similarly, at both a and b she should be certain

that she should be certain of this: [P ([P (Word) = 1]) = 1] = [P ({a, b}) = 1] = {a, b}.
Meanwhile, at c she should be 1

3 confident that there’s a word: [P (Word) = 1
3 ] = {c}.

Crucially, at c the credences she should have, P , are not introspective. (Recall that

Negative Introspection failed for what she should know, S, in the above model of this

scenario. Likewise, now, for introspection of how confident she should be.) In particular,

[P ([P (Word) = 1
3 ]) = 2

3 ] = [P ({c}) = 2
3 ] = {c}, so at c she should assign 2

3 credence to

the claim that she should assign 1
3 credence to Word. Meanwhile, [P ([P (Word) = 1]) =

1
3 ] = [P ({a, b}) = 1

3 ] = {c}, so at c she should also assign 1
3 credence to the claim that

she should assign credence 1 to Word.

This is as it should be: (she knows that) if there is a word, she should know (and

thus be sure) there is, whereas if there’s no word, she can’t know (and thus should be

unsure) whether there is. Thus at possibility c, she should be unsure what credence

she should have. Combining this frame with the above model of her actual credences,
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since she does know what her actual credences are, it follows that she should be unsure

whether her actual credences equal the credences she should have.

2.1 Why Reflection/Martingale principles fail

If you’re unsure of the value of a random variable, you can take it’s expectation. Since

at c our agent should be unsure of the value of P (Word), i.e. how confident she should

be that there’s a word, she can take it’s expectation. For any random variable X

(X : W → R), let Ew(X) :=
∑

t∈R Pw(X = t) · t be Pw’s expectation of X, i.e. the

expectation for X that our agent should have at world w.2

What should our agent’s expectation of P (Word) be at c? It’s easy to calculate that

Ec(P (Word)) = Pc(P (Word) = 1
3) · 1

3
+ Pc(P (Word) = 1) · 1

=
2

3
· 1

3
+

1

3
· 1

=
5

9

Since Pc(Word) = 1
3 , it follows that Pc(Word) = !

3 6=
5
9 = Ec(P (Word)). That is, the

credence our agent should have in Word does not equal the expectation she should have

for the credence she should have in Word.3

This is because once we have higher-order uncertainty, “Reflection” or Martingale-

principles fail. Such principles say things like: Pc(q|P (q) = t) = t; or, using ‘π’ as

a rigid designator for credence functions, Pc(·|P = π) = π. Such principles always

fail when there is higher-order uncertainty (Samet 2000; Dorst 2019). This is easy

to see conceptually. Suppose π has higher-order uncertainty, and so in particular

π(P = π) < 1. Then conditional on P being π, you should of course be certain that P is

π: Pc(P = π|P = π) = 1. But since by hypothesis π is not certain of that, π(P = π) < 1.

Thus Pc(·|P = π) 6= π (Elga 2013).

Here’s a concrete example. At world c, our agent should leave open that the cre-

dence she should have that there’s a word is either 1
3 (if there’s no word), or 1 (if

there is a word). How confident should she be that there’s a word, conditional on the

the claim that she should be 1
3 confident that there’s a word? Reflection/martingale

principles would say 1
3 . But that’s wrong. If there is a word, she should have cre-

dence 1 there is. If there’s not, she should have credence 1
3 there is. So conditional

on the claim that she should be 1
3 confident there’s a word, she should be certain

there’s not a word. Formally, [P (Word) = 1
3 ] = {c} ⊆ ¬Word, in our frame, therefore

2Remember W is finite, so the summation is kosher.
3Note that, of course Eb(P (Word)) = 1. Thus since Pc is unsure whether c or b is actual, it is likewise

unsure whether the rational expectation of P (Word) is 5
9

or 1. This is as it should be: whenever
probabilities aren’t introspective, so too expectations won’t be introspective.
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Pc(Word|P (Word) = 1
3) = Pc(Word |{c}) = Pc({a, b} |{c}) = 0. The reason is this: if she

should be 1
3 confident that there’s a word, that’s only because she can’t be sure she should

be 1
3 confident there’s a word (she has higher-order uncertainty). Thus learning that

she should be 1
3 confident that there’s a word gives her new information—information

she didn’t have before—and therefore can change how confident she should be.
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