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Decision Theory

Up to this point most of our discussion has been about epistemology. But
probability theory originated in attempts to understand games of chance,
and historically its most extensive application has been to practical decision-
making. The Bayesian theory of probabilistic credence is a central element
of decision theory, which developed throughout the twentieth century in
philosophy, psychology, and economics. Decision theory searches for rational
principles to evaluate the acts available to an agent at any given moment. Given
what she values (her utilities) and how she sees the world (her credences),
decision theory recommends the act that is most efficacious for achieving those
values from her point of view.

Decision theory has always been a crucial application of Bayesian theory. In
his The Foundations of Statistics, Leonard J. Savage wrote:

Much as I hope that the notion of probability defined here is consistent with
ordinary usage, it should be judged by the contribution it makes to the theory
of decision. (1954, p. 27)

Decision theory has also been extensively studied, and a number of excellent
book-length introductions are now available. (I recommend one in the Fur-
ther Reading section of this chapter.) As a result, I haven’t packed as much
information into this chapter as into the preceding chapter on confirmation.
I hope only to equip the reader with the terminology and ideas we will need
later in this book, and that she would need to delve further into the philosophy
of decision theory.

We will begin with the general mathematical notion of an expectation,
followed by the philosophical notion of utility. We will then see how Savage
calculates expected utilities to determine rational preferences among acts, and
the formal properties of rational preference that result. Next comes Richard
Jeffrey’s Evidential Decision Theory, which improves on Savage’s by applying
to probabilistically dependent states and acts. We will then discuss Jeffrey’s
troubles with certain kinds of risk-aversion (especially the Allais Paradox),
and with Newcomb’s Problem. Causal Decision Theory will be proposed as

Fundamentals of Bayesian Epistemology 2: Arguments, Challenges, Alternatives. Michael G. Titelbaum,
Oxford University Press. © Michael G. Titelbaum 2022. DOI: 10.1093/0s0/9780192863140.003.0007

€20 Joquieidag g0 uo Jasn salelqr LIN Ad 915/6/GE/191deyd/g L6 1 #/4000/wod dno oiwspese)/:sdjy Wwolj papeojumoq



7.1 CALCULATING EXPECTATIONS 247

a better response to Newcomb. I will close by briefly tracing some of the
historical back-and-forth about which decision theory handles Newcomb’s
problem best.

7.1 Calculating expectations

Suppose there’s a numerical quantity—say, the number of hits a particular
batter will have in tonight’s baseball game—and you have opinions about what
value that quantity will take. We can then calculate your expectation for the
quantity. While there are subtleties we will return to later, the basic idea of an
expectation is to multiply each value the quantity might take by your credence
that it'll take that value, then add up the results. So if youre 30% confident the
batter will have one hit, 20% confident she’ll have two hits, and 50% confident
she’ll have three, your expectation for the number of hits is

1-030+2-020+3-0.50=2.2 (7.1)

Your expectation of a quantity is not the value you anticipate the quantity will
actually take, or even the value you think it's most probable the quantity will
take—in the baseball example, you're certain the batter won’t have 2.2 hits in
tonight’s game! Your expectation of a quantity is a kind of estimate of the value
the quantity will take. When you’re uncertain about the value of a quantity, a
good estimate may straddle the line between multiple options.

While your expectation for a quantity isn’t necessarily the exact value you
think it will take on a given occasion, it should equal the average value you
expect that quantity to take in the long run. Suppose you're certain that our
batter will play in many, many games. The law of large numbers says that if
you satisfy the probability axioms, you’ll have credence 1 that as the number
of games increases, her average number of hits per game will tend toward your
expectation for that quantity. In other words, you're highly confident that as
the number of games approaches the limit, the batter’s average hits per game
will approach 2.2.1

We've already calculated expectations for a few different quantities in this
book. For example, when you lack inadmissible evidence the Principal Prin-
ciple requires your credence in a proposition to equal your expectation of its
chance. (See especially our calculation in Equation (5.7).) But by far the most
commonly calculated expectations in life are monetary values. For example,
suppose you have the opportunity to buy stock in a company just before it
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248 DECISION THEORY

announces quarterly earnings. If the announcement is good you’ll be able to
sell shares at $100 each, but if the announcement is bad you'll be forced to sell at
$10 apiece. The value you place in these shares depends on your confidence in
agood report. If you're 40% confident in a good earnings report, your expected
value for each share is

$100 - 0.40 + $10 - 0.60 = $46 (7.2)

As a convention, we let positive monetary values stand for money accrued to
the agent; negative monetary values are amounts the agent pays out. So your
expectation of how much money you will receive for each share is $46.

An agent’s fair price for an investment is what she takes to be that invest-
ment’s break-even point—shed pay anything up to that amount of money
in exchange for the investment. If you use expected values to make your
investment decisions, your fair price for each share of the stock just described
will be $46. If you buy shares for less than $46 each, your expectation for that
transaction will be positive (you'll expect to make money on the deal). If you
buy shares for more than $46, you'll expect to lose money.

The idea that your fair price for an investment should equal your expectation
of its monetary return dates to Blaise Pascal, in a famous seventeenth-century
correspondence with Pierre Fermat (Fermat and Pascal 1654/1929). There are
a couple of reasons why this is a sensible idea. First, suppose you know you’re
going to be confronted with this exact investment situation many, many times.
The law of large numbers says that you should anticipate a long-run average
return of $46 per share. So if you're going to adopt a standing policy for buying
and selling such investments, you are highly confident that any price higher
than $46 will lose you money and any price lower than $46 will make you
money in the long term. Second, expectations vary in intuitive ways when
conditions change. If you become more confident in a good earnings report,
each share becomes more valuable to you, and you should be willing to pay
a higher price. This is exactly what the expected value calculation predicts. If
you learn that a good earnings report will send the share value to only $50, this
decreases the expected value of the investment and also decreases the price you
should be willing to pay.

An investment is a type of bet, and fair betting prices play a significant role
in Bayesian lore. (We'll see one reason why in Chapter 9.) A bet that pays $1 if
proposition P is true and nothing otherwise has an expected value of

$1 - cr(P) + $0 - cr(~P) = $cr(P) (7.3)
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7.1 CALCULATING EXPECTATIONS 249

If you use expectations to calculate fair betting prices, your price for a gamble
that pays $1 on P equals your unconditional credence in P.

We can also think about fair betting prices using odds. We saw in Section
2.3.4 that an agent’s odds against P equal cr(~P) : cr(P). So if the agent’s
credence in P is 0.25, her odds against P are 3 : 1. What will she consider a
fair bet on P? Consider what the casinos would call a bet on Pat 3 : 1 odds. If
you place such a bet and win, you get back the original amount you bet plus
three times that amount. If you lose your bet, youre out however much you
bet. In terms of net returns, a bet at 3 : 1 odds offers you a possible net gain
that’s three times your possible net loss.

So suppose an agent with 0.25 credence in P places a $20 beton Pat 3 : 1
odds. Her expected net return is

(net return on winning bet) - cr(P) + (net return on losing bet) - cr(~P)
= $60 - 0.25 + —$20 - 0.75 = $0 (7.4)

This agent expects a bet on P at 3 : 1 odds to be a break-even gamble—from
her perspective, it’s a fair bet. She will be willing to bet on P at those odds or
anything higher. In general, an agent who bets according to her expectations
will accept a bet on a proposition at odds equal to her odds against it, or
anything higher. Remember that an agent’s odds against a proposition increase
as her credence in the proposition decreases. So if an agent becomes less
confident in P, you need to offer her higher odds on P before she’ll be willing
to gamble.

A lottery ticket is a type of bet, and in the right situation calculating its
expected value can be highly lucrative. Ellenberg (2014, Ch. 11) relates the
story of Massachusetts’s Cash WinFall state lottery game, which was structured
in such a way that if the jackpot got high enough, the expected payout for a
single ticket grew larger than the price the state charged for that ticket. For
example, on February 7, 2005 the expected value of a $2 lottery ticket was
$5.53. The implications of this arrangement were understood by three groups
of individuals—led respectively by an MIT student, a medical researcher in
Boston, and a retiree in Michigan who had played a short-lived similar game
in his home state. Of course, the expected value of a ticket isn’t necessarily what
you will win if you buy a single ticket, but because of the long-run behavior of
expectations your confidence in a net profit goes up the more tickets you buy.
So these groups bought a lot of tickets. For instance, on August 13, 2010 the
MIT group bought around 700,000 tickets, almost 90% of the Cash WinFall
tickets purchased that day. Their $1.4 million investment netted about $2.1
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million in payouts, for a 50% profit in one day. Expected value theory can be
extremely effective.

7.1.1 The move to utility

Yet sometimes we value something other than money. For example, suppose
it’s late at night, it’s cold out, youre trying to catch a bus that costs exactly $1
to ride, and you've got no money on you. A stranger offers either to give you
$1 straight up, or to flip a fair coin and give you $2.02 if it comes up heads. It
might be highly rational for you to prefer the guaranteed dollar even though
its expected monetary value is less than that of the coin bet.

Decision theorists and economists explain this preference with the notion of
utility. Introduced by Daniel Bernoulli and Gabriel Cramer in the eighteenth
century,? utility is a numerical quantity meant to directly measure how much
an agent values an arrangement of the world. Just as we suppose that each
agent has her own credence distribution, we will suppose that each agent has
a real-valued utility distribution over the propositions in language £. The
utility an agent assigns to a proposition represents how much she values that
proposition’s being true (or if you like, how happy that proposition’s being
true would make her). If an agent would be just as happy for one proposition
to be true as another, she assigns them equal utility. But if it would make her
happier for one of those propositions to be true, she assigns it the higher utility
of the two.

Utilities provide a uniform value-measurement scale. In the bus example
above, you don't value each dollar equally. Going from zero dollars to one
dollar would mean a lot to you; it would get you out of the cold and on your way
home. Going from one dollar to two dollars would not mean nearly as much
in your present context. Not every dollar represents the same amount of value
in your hands, so counting the number of dollars in your possession is not a
consistent measure of how much you value your current state. On the other
hand, utilities measure value uniformly. We stipulate that each added unit of
utility (sometimes called a util) is equally valuable to an agent. She is just as
happy to go from —50 utils to —49 as she is to go from 1 util to 2, and so on.

Having introduced this uniform value scale, we can explain your preferences
in the bus case using expectations. Admittedly, the coin flip gamble has a higher
expected monetary payoft ($1.01) than the guaranteed dollar. But monetary
value doesn’t always translate neatly to utility, and utility reflects the values on
which you truly make your decisions. Let’s say that having no money is worth
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0 utils to you in this case, receiving one dollar and being able to get on the bus
is worth 100 utils, and receiving $2.02 is worth 102 utils. (The larger amount
of monevy is still more valuable to you; just not much more valuable.) When we
calculate the expected utility of the gamble, it only comes to 51 utils, which is
much less than the 100 expected utils associated with the guaranteed dollar. So
you prefer the dollar guarantee.

The setup of this example is somewhat artificial, because it makes the value
of money change radically at a particular cutoff point. But economists think
money generally has a decreasing marginal utility for agents. While an agent
always receives some positive utility from each additional dollar (or peso, or
yuan, or .. .), the more dollars she already has the less extra utility it will be. The
first billion you earn makes your family comfortable; the second billion doesn’t
have as much significance for your life. Postulating an underlying locus of value
distinguishable from monetary worth helps explain why we don’t always chase
the next dollar as hard as we chased the first.

With that said, quantifying value on a numerical scale introduces many of
the same problems we found with quantifying confidence. First, it’s not clear
that a real agent’s psychology will always be as nuanced as a numerical utility
structure seems to imply. And second, the moment you assign numerical
utilities to every arrangement of the world you make them all comparable;
the possibility of incommensurable values is lost. (Compare Section 1.2.2.)

7.2 Expected utility theory
7.2.1 Preference rankings and money pumps

A decision problem presents an agent with a partition of acts, from which she
must choose exactly one. Decision theory aims to lay down rational principles
governing choices in decision problems. It does so by supposing that a rational
agent’s choice of acts tracks her preferences among those acts. If the available
acts are A and B, and she prefers A to B (we write A > B), then the agent decides
to perform action A. A similar point applies when B > A. Yet it might be that
the agent is indifferent between A and B (we write A ~ B), in which case she is
rationally permitted to choose either one.

Sometimes a decision among acts is easy. If the agent is certain how much
utility will be generated by the performance of each act, the choice is simple—
she prefers the act leading to the highest-utility result. Yet the utility resulting
from an act often depends on features of the world beyond the agent’s control
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(think, for instance, of the factors determining whether a particular career
choice turns out well), and the agent may be uncertain how those features
stand. In that case, the agent needs a technique for factoring uncertainty into
her decision. She needs a technique for combining credences and utilities to
generate preferences.

Decision theory responds to this problem by providing a valuation func-
tion, which combines credences and utilities to assign each act a numerical
score. The agent’s preferences are assumed to match these scores: A > B just in
case A receives a higher score than B, while A ~ B when the scores are equal.
Given a particular decision problem, a rational agent will select the available
act with the highest score (or—if there are ties at the top—one of the acts with
the highest score).

Here’s an example of a valuation function, just to convey the idea: Suppose
you assign each act a numerical score by considering all the possible worlds
to which you assign nonzero credence, finding the one in which that act
produces the lowest utility, and then assigning that minimal utility value as
the act’s score. This valuation function generates preferences satisfying the
maximin rule, so called because it selects the act with the highest minimum
utility payoff. Maximin attends to only the worst case scenario for each
available act.

While maximin is just one valuation function (we’ll see others later), any
approach that ties preferences to numerical scores assigned over acts imposes
a certain structure on an agent’s preferences. For instance, it guarantees that
her preferences will display:

Preference Transitivity: For any acts A, B, and C, if the agent prefers A to B
and B to C, then the agent prefers A to C.

This follows from the simple fact that numerical inequalities are transitive:
each act’s score is a number, so if act A’s score is greater than act B’s, and B’s is
greater than C’s, then A’s must be greater than C’s as well.

Preference Transitivity will be endorsed as a rational constraint by any
decision theory that ties preferences to numerical valuation functions. One
might object that an agent may prefer A to B and prefer B to C, but never
have thought to compare A to C. In other words, one might think that such an
agent’s preference ranking could go silent on the comparison between A and C
and still be rational. Yet by coordinating preference with a numerical valuation
over the entire partition of acts, we have already settled this issue; we have
required the agent’s preferences to form a complete ranking. Since every act
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receives a score, every act is comparable, and our theory demands the agent
assign a preference (or indifference) between any two acts. Decision theorists
sometimes express this as:

Preference Completeness: For any acts A and B, exactly one of the following
is true: the agent prefers A to B, the agent prefers Bto A, or the agent
is indifferent between the two.

Notice that Preference Completeness entails the following:

Preference Asymmetry: There do not exist acts A and B such that the agent
both prefers A to B and prefers B to A.

To recap: Decision theory begins by requiring an agents’ choices to reflect
her preferences, then coordinates those preferences with a numerical valua-
tion function combining credences and utilities. By making the latter move,
decision theory requires preferences to satisfy Preference Transitivity and
Asymmetry. Hopefully it’s intuitive that rational preferences satisfy these two
conditions. But we can do better than that: We can provide an argument that
Preference Transivity and Asymmetry are rational requirements.

Consider a situation in which some of us find ourselves frequently. On any
given weeknight, I would prefer to do something else over washing the dishes.
(Going to a movie? Great! Watching the game? Good idea!) But when the week
ends and the dishes have piled up, I realize that I would've preferred foregoing
one of those weeknight activites in order to avoid a disgusting kitchen. Each of
my individual decisions was made in accordance with my preferences among
the acts I was choosing between at the time, yet together those local preferences
added up to a global outcome I disprefer.

A student once suggested to me that he prefers eating out to cooking for
himself, prefers eating at a friend’s to eating out, but prefers cooking for himself
to eating at a friend’s. Imagine one night my student is preparing himself
dinner, then decides hed prefer to order out. He calls up the takeout place,
but before they pick up the phone he decides hed rather drive to his friend’s
for dinner. He gets in his car and is halfway to his friend’s, when he decides
hed rather cook for himself. At which point he turns around and goes home,
having wasted a great deal of time and energy. Each of those choices reflects
the student’s preference between the two options he considers at the time, yet
their net effect is to leave him right back where he started meal-wise and out a
great deal of effort overall.
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My student’s preferences violate Transitivity; as a result he’s susceptible to
a money pump. In general, a money pump against intransitive preferences
(preferring A to B, B to C, and C to A) can be constructed like this: Suppose
youre about to perform act B, and I suggest I could make it possible to do
A instead. Since you prefer A to B, there must be some amount of something
(we'll just suppose it's money) youd be willing to pay me for the option to
perform A. So you pay the price, are about to perform A, but then I hold out
the possibility of performing C instead. Since you prefer C to A, you pay me
a small amount to make that switch. But then I offer you the opportunity to
perform B rather than C—for a small price, of course. And now you're back to
where you started with respect to A, B, and C, but out a few dollars for your
trouble. To add insult to injury, I could repeat this set of trades again, and
again, milking more and more money out of you until I decide to stop. Hence
the “money pump” terminology.’

Violating Preference Transitivity leaves one susceptible to a money-
pumping set of trades. (If you violate Preference Asymmetry, the money
pump is even simpler.) In a money pump, the agent proceeds through a series
of exchanges, each of which looks favorable given his preferences between the
two acts involved. But when those exchanges are combined, the total package
produces a net loss (which the agent would prefer to avoid). The money pump
therefore seems to reveal an inconsistency between the agent’s local and global
preferences, as in my dishwashing example. (We will further explore this kind
of inconsistency in our Chapter 9 discussion of Dutch Books.) The irrationality
of being susceptible to a money pump has been taken as a strong argument
against violating Preference Asymmetry or Transitivity.*

7.2.2 Savage's expected utility

Savage (1954) frames decision problems using a partition of acts available to
the agent and a partition of states the world might be in. A particular act
performed with the world in a particular state produces a particular outcome.
Agents assign numerical utility values to outcomes; given partial information
they also assign credences over states.’

Here’s a simple example: Suppose you're trying to decide whether to carry
an umbrella today, but youre uncertain whether it’s going to rain. This table
displays the utilities you assign various outcomes:
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rain | dry
take 0 -1
umbrella
leave —10| O
it

You have two available acts, represented in the rows of the table. There are
two possible states of the world, represented in the columns. Performing a
particular act when the world is in a particular state produces a particular
outcome. If you leave your umbrella behind and it rains, the outcome is you
walking around wet. The cells in the table report your utilities for the outcomes
produced by various act/state combinations. Your utility for walking around
wet is —10 utils, while carrying an umbrella on a dry day is inconvenient but
not nearly as unpleasant (—1 util).

How should you evaluate available acts and set your preferences among
them? For a finite partition {S,,S,, ...,S,} of possible states of the world,
Savage offers the following valuation function:

EU,,(A) =u(A & S)) - cr(S) +u(A & S,) - cr(S,)

(7.5)
+ ... +u(A&S,)-c(S,)

Here A is the particular act being evaluated. Savage evaluates acts by calculat-
ing their expected utilities; EUg,,(A) represents the expected utility of act A
calculated in the manner Savage prefers. (We'll see other ways of calculating
expected utility later on.) cr(S;) is the agent’s unconditional credence that the
world is in state S; u(A & §;) is the utility she assigns to the outcome that
will eventuate should she perform act A in state S;.% So EUy,, calculates the
weighted average of the utilities the agent might receive if she performs A,
weighted by her credence that she will receive each one. Savage holds that given
a decision among a partition of acts, a rational agent will set her preferences in
line with her expected utilities. She will choose to perform an act with at least
as great an expected utility as that of any act on offer.

Now suppose that in the umbrella case you have a 0.30 credence in rain. We
can calculate expected utilities for each of the available acts as follows:

EU,,,(take) = 0-0.30 + —1 - 0.70 = —0.7

(7.6)
EU,,,(leave) = —10-0.30 + 0 - 0.70 = —3
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Taking the umbrella has the higher expected utility, so Savage thinks that if
you're rational you’ll prefer to take the umbrella. Youre more confident it’ll
be dry than rain, but this is outweighed by the much greater disutility of a
disadvantageous decision in the latter case than the former.

EU,,, is a valuation function that combines credences and utilities in a
specific way to assign numerical scores to acts. As a numerical valuation
function, it generates a preference ranking satisfying Preference Asymmetry,
Transitivity, and Completeness. But calculating expected utilities this way also
introduces new features not shared by all valuation functions. For example,
Savage’s expected utility theory yields preferences that satisfy the

Dominance Principle: Ifact A produces a higher-utility outcome than act B
in each possible state of the world, then A is preferred to B.

The Dominance Principle’ seems intuitively like a good rational principle. Yet,
surprisingly, there are decision problems in which it yields very bad results.
Since Savage’s expected utility theory entails the Dominance Principle, it can
be relied upon only when we don't find ourselves in decision problems like that.

7.2.3 Jeffrey’s theory

To see what can go wrong with dominance reasoning, consider this example
from (Weirich 2012):

A student is considering whether to study for an exam. He reasons that if he
will pass the exam, then studying is wasted effort. Also, if he will not pass the
exam, then studying is wasted effort. He concludes that because whatever will
happen, studying is wasted effort, it is better not to study.

The student entertains two possible acts—study or dont study—and two
possible states of the world—he either passes the exam or he doesn’t. His utility
table looks something like this:

pass | fail
study | 18 | =5
dont | 20 | -3
study
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Because studying costs effort, passing having not studied is better than passing
having studied, and failing having not studied is also better than failing
having studied. So whether he passes or fails, not studying yields a higher
utility. By the Dominance Principle, the student should prefer not studying to
studying.

This is clearly a horrible argument; it ignores the fact that whether the
student studies affects whether he passes the exam.® The Dominance Principle—
and Savage’s expected utility theory in general—breaks down when the state
of the world is influenced by which act the agent performs. Savage recognizes
this limitation, and so requires that the acts and states used in framing decision
problems be independent of each other. Jeffrey (1965), however, notes that in
real life we often analyze decision problems in terms of dependent acts and
states. Moreover, he worries that agents might face decision problems in which
they are unable to identify independent acts and states.” So it would be helpful
to have a decision theory that didn’t require acts and states to be independent.

Jeftrey offers just such a theory. The key innovation is a new valuation
function that calculates expected utilities differently from Savage’s. Given an
act A and a finite partition {S;,S,, ...,S,} of possible states of the world,'°
Jeftrey calculates

EU. (A) =u(A & S)) - cr(S; |A) + u(A & S,) - cx(S, | A) .

+ ... +u(A&S,)-c(S,|A) 77

I'll explain the “EDT” subscript later on; for now, it’s crucial to see that Jeffrey

alters Savage’s approach (Equation (7.5)) by replacing the agent’s unconditional

credence that a given state S; obtains with the agent’s conditional credence that

S; obtains given A. This incorporates the possibility that performing the act the

agent is evaluating will change the probabilities of various states of the world.

To see how this works, consider Jeftrey’s example of a guest deciding whether

to bring white or red wine to dinner. The guest is certain his host will serve

either chicken or beef, but doesn’t know which. The guest’s utility table is as
follows:

chicken | beef
white 1 -1
red 0 1

For this guest, bringing the right wine is always pleasurable. Red wine with
chicken is merely awkward, while white wine with beef is a disaster.
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At a typical dinner party, the entree for the evening is settled well before the
guests arrive. But let’s suppose that tonight’s host is especially accommodating,
and will select a meat in response to the wine provided. (Perhaps the host has
a stocked pantry, and waits to prepare dinner until the wine has arrived.) The
guest is 75% confident that the host will select the meat that best pairs with
the wine provided. Thus the state (meat served) depends on the agent’s act
(wine chosen). This means the agent cannot assign a uniform unconditional
credence to each state prior to his decision. Instead, the guest assigns one
credence to chicken conditional on his bringing white, and another credence
to chicken conditional on his bringing red. These credences are reflected in the
following table:

chicken | beef
white 0.75 0.25
red 0.25 0.75

It's important to read the credence table differently from the utility table. In the
utility table, the entry in the white/chicken cell is the agent’s utility assigned
to the outcome of chicken served and white wine. In the credence table, the
white/chicken entry is the agent’s credence in chicken served given white wine.
The probability axioms and Ratio Formula together require all the credences
conditional on white wine sum to 1, so the values in the first row sum to 1. The
values in the second row sum to 1 for a similar reason. (In this example the
values in each column sum to 1 as well, but that won’t always be the case.)

We can now use Jeffrey’s formula to calculate the agent’s expected utility for
each act. For instance:

EU,, (white) = u(white & chicken) - cr(chicken | white)
+ u(white & beef) - cr(beef | white)
=1:-0754+-1-0.25
=0.5

(7.8)

(We multiply the values in the first row of the utility table by the corresponding
values in the first row of the credence table, then sum the results.) A similar
calculation yields EU,.(red) = 0.75. Bringing red wine has a higher expected
utility for the agent than bringing white, so the agent should prefer bring-
ing red.

Earlier I said somewhat vaguely that Savage requires acts and states to be
“independent”; Jeffrey’s theory gives that notion a precise meaning. EU, .
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revolves around an agent’s conditional credences, so for Jeftrey the relevant
notion of independence is probabilistic independence relative to the agent’s
credence distribution. That is, an act A and state S; are independent for Jeffrey
just in case

cr(S; | A) = cr(S)) (7.9)

In the special case where the act A being evaluated is independent of each
state S;, the cr(S;| A) expressions in Jeffrey’s formula may be replaced with
cr(S;) expressions. This makes Jeftrey’s expected utility calculation identical
to Savage’s. When acts and states are probabilistically independent, Jeffrey’s
theory yields the same preferences as Savage’s. And since Savage’s theory
entails the Dominance Principle, Jeffrey’s theory will also embrace Dominance
in this special case.

But what happens to Dominance when acts and states are dependent? Here
Jeffrey offers a nuclear deterrence example. Suppose a nation is choosing
whether to arm itself with nuclear weapons, and knows its rival nation will
follow its lead. The possible states of the world under consideration are war
versus peace. The utility table might be:

war | peace
arm —100 0
disarm | —50 50

Wars are worse when both sides have nuclear arms; peace is also better without
nukes on hand (because of nuclear accidents, etc.). A dominance argument is
available since whichever state obtains, disarming provides the greater utility.
So applying Savage’s theory to this example would yield a preference for
disarming.

Yet the advocate of nuclear deterrence takes the states in this example to
depend on the acts. The deterrence advocate’s credence table might be:

war | peace
arm 0.1 0.9
disarm | 0.8 0.2

The idea of deterrence is that if both countries have nuclear arms, war becomes
much less likely. If arming increases the probability of peace, the acts and states
in this example are probabilistically dependent. Jeftrey’s theory calculates the
following expected utilities from these tables:
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EU,,(arm) = —=100-0.14+0-0.9 = —10

(7.10)
EU,,.(disarm) = —50 - 0.8 + 50 - 0.2 = —30
Relative to the deterrence advocate’s credences, Jeffrey’s theory yields a prefer-
ence for arming. Act/state dependence has created a preference ranking at odds
with the Dominance Principle.!! When an agent takes the acts and states in a
decision problem to be independent, Jeffrey’s and Savage’s decision theories
are interchangeable, and dominance reasoning is reliable. But Jeftrey’s theory
also provides reliable verdicts when acts and states are dependent, a case in
which Savage’s theory and the Dominance Principle may fail.

7.2.4 Risk aversion and Allais’ Paradox

Different people respond to risks differently. Many agents are risk-averse;
they would rather have a sure $10 than take a 50-50 gamble on $30, even
though the expected dollar value of the latter is greater than that of the
former.

Economists have traditionally explained this preference by appealing to the
declining marginal utility of money. If the first $10 yields much more utility
than the next $20 for the agent, then the sure $10 may in fact have a higher
expected utility than the 50-50 gamble. This makes the apparently risk-averse
behavior perfectly rational. But it does so by portraying the agent as only
apparently risk-averse. On this explanation, the agent would be happy to take
a risk if only it offered her a higher expectation of what she really values:
utility. But might some agents be genuinely risk-averse—might they be willing
to give up a bit of expected utility if it meant they didn’t have to gamble? If we
could offer agents a direct choice between a guaranteed 10 utils and a 50-50
gamble on 30, might some prefer the former? (Recall that utils are defined so
as not to decrease in marginal value.) And might that preference be rationally
permissible?

Let’s grant for the sake of argument that simple risk-aversion cases involving
monetary gambles can be explained by attributing to the agent a utility
distribution with decreasing marginal utility over dollars. Other documented
responses to risk cannot be explained by any kind of utility distribution.
Suppose a fair lottery is to be held with 100 numbered tickets. You get to choose
between two gambles, with the following payoffs should particular tickets be
drawn:
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Ticket 1 Tickets 2-11  Tickets 12-100

Gamble A $1M $1M $1M
Gamble B $0 $5M $1M

(Here “$1M” is short for 1 million dollars.) Which gamble would you prefer?
After recording your answer somewhere, consider the next two gambles (on
the same lottery) and decide which of them you would prefer if they were your
only options:

Ticket 1 Tickets 2-11 Tickets 12-100

Gamble C $1M $1M $0
Gamble D $0 $5M $0

When subjects are surveyed, they often prefer Gamble D to C; they’re probably
not going to win anything, but if they do theyd like a serious shot at $5 million.
On the other hand, many of the same subjects prefer Gamble A to B, because
A guarantees them a payout of $1 million.

Yet anyone who prefers A to B while at the same time preferring D to C
violates Savage’s'?

Sure-Thing Principle: If two acts yield the same outcome on a particular
state, any preference between them remains the same if that out-
come is changed.

In our example, Gambles A and B yield the same outcome for tickets 12
through 100: 1 million dollars. If we change that common outcome to 0 dollars,
we get Gambles C and D. The Sure-Thing Principle requires an agent who
prefers A to B also to prefer Cto D. Put another way: if the Sure-Thing Principle
holds, we can determine a rational agent’s preferences between any two acts
by focusing exclusively on the states for which those acts produce different
outcomes. In both the decision problems here, tickets 12 through 100 produce
the same outcome no matter which act the agent selects. So we ought to be
able to determine her preferences by focusing exclusively on the outcomes for
tickets 1 through 11. Yet if we focus exclusively on those tickets, A stands to
B in exactly the same relationship as C stands to D. So the agent’s preferences
across the two decisions should be aligned.

The Sure-Thing Principle is a theorem of Savage’s decision theory. It is
therefore also a theorem of Jeffrey’s decision theory for cases in which acts
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and states are independent, as they are in the present gambling example. Thus
preferring A to B while preferring D to C—as real-life subjects often do—is
incompatible with those two decision theories. And here we can’t chalk up the
problem to working with dollars rather than utils. There is no possible utility
distribution over dollars on which Gamble A has a higher expected utility than
Gamble B while Gamble D has a higher expected utility than Gamble C. (See
Exercise 7.10.)

Jeffrey and Savage, then, must shrug off these commonly paired preferences
as irrational. Yet Maurice Allais, the Nobel-winning economist who intro-
duced the gambles in his (1953), thought that this combination of preferences
could be perfectly rational. Because it’s impossible to maintain these seemingly
reasonable preferences while hewing to standard decision theory, the example
is now known as Allais’ Paradox. Allais thought the example revealed a deep
flaw in the decision theories we've been considering.!?

We have been discussing decision theories as normative accounts of how
rational agents behave. Economists, however, often assume that decision
theory provides an accurate descriptive account of real agents’ market deci-
sions. Real-life subjects’ responses to cases like the Allais Paradox prompted
economists to develop new descriptive theories of agents’ behavior, such as
Kahneman and Tversky’s Prospect Theory (Kahneman and Tversky 1979;
Tversky and Kahneman 1992). More recently, Buchak (2013) has proposed
a generalization of standard decision theory that accounts for risk aversion
without positing declining marginal utilities, and is consistent with the Allais
preferences many real-life subjects display.

7.3 Causal Decision Theory

Although we have been focusing on the expected values of propositions
describing acts, Jeffrey’s valuation function can be applied to any sort
of proposition. For example, suppose my favorite player has been out of
commission for weeks with an injury, and I am waiting to hear whether he will
play in tonight’s game. I start wondering whether I would prefer that he play
tonight or not. Usually it would make me happy to see him on the field, but
there’s the possibility that he will play despite his injury’s not being fully healed.
That would definitely be a bad outcome. So now I combine my credences
about states of the world (is he fully healed? is he not?) with my utilities for the
various possible outcomes (plays fully healed, plays not fully healed, etc.) to
determine how happy I would be to hear that he’s playing or not playing.
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Having calculated expected utilities for both “plays” and “doesn’t play”,
I decide whether I'd prefer that he play or not.

Put another way, I can use Jeffrey’s expected utility theory to determine
whether I would consider it good news or bad were I to hear that my favorite
player will be playing tonight. And I can do so whether or not I have any influ-
ence on the truth of that proposition. Jeffrey’s theory is sometimes described
as calculating the “news value” of a proposition.

Even for propositions describing our own acts, Jeffrey’s expected utility
calculation assesses news value. I might be given a choice between a sure $1 and
a 50-50 chance of $2.02. I would use my credences and utility distribution to
determine expected values for each act, then declare which option I preferred.
But notice that this calculation would go exactly the same if instead of my
selecting among the options, someone else was selecting on my behalf. What’s
ultimately being compared are the proposition that I receive a sure dollar and
the proposition that I receive whatever payoff results from a particular gamble.
Whether I have the ability to make one of those propositions true rather than
the other is irrelevant to Jeffrey’s preference calculations.

7.3.1 Newcomb’s Problem

Jeffrey’s focus on news value irrespective of agency leads him into trouble with
Newcomb’s Problem. This problem was introduced to philosophy by Robert
Nozick, who attributed its construction to the physicist William Newcomb.
Here’s how Nozick introduced the problem:

Suppose a being in whose power to predict your choices you have enormous
confidence. (One might tell a science-fiction story about a being from another
planet, with an advanced technology and science, who you know to be
friendly, etc.) You know that this being has often correctly predicted your
choices in the past (and has never, so far as you know, made an incorrect
prediction about your choices), and furthermore you know that this being
has often correctly predicted the choices of other people, many of whom are
similar to you, in the particular situation to be described below. One might
tell a longer story, but all this leads you to believe that almost certainly this
being’s prediction about your choice in the situation to be discussed will be
correct.

There are two boxes. [The first box] contains $1,000. [The second box]
contains either $1,000,000, or nothing.... You have a choice between two
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actions: (1) taking what is in both boxes (2) taking only what is in the second
box.

Furthermore, and you know this, the being knows that you know this, and

SO on:

(I) If the being predicts you will take what is in both boxes, he does not put
the $1,000,000 in the second box.

(II) If the being predicts you will take only what is in the second box, he does
put the $1,000,000 in the second box.

The situation is as follows. First the being makes its prediction. Then it puts
the $1,000,000 in the second box, or does not, depending upon what it has
predicted. Then you make your choice. What doyoudo? (1969, pp. 114-15)

Historically, Newcomb’s Problem prompted the development of a new kind
of decision theory, now known as Causal Decision Theory (sometimes just
“CDT”). At the time of NozicK’s discussion, extant decision theories (such as
Jeffrey’s) seemed to recommend taking just one box in Newcomb’s Problem
(so-called “one-boxing”). But many philosophers thought two-boxing was the
rational act.!* By the time you make your decision, the being has already made
its prediction and taken its action. So the money is already either in the second
box, or it’s not—nothing you decide can affect whether the money is there.
However much money is in the second box, youre going to get more money
($1,000 more) if you take both boxes. So you should two-box.

I've quoted Nozicks original presentation of the problem because in the
great literature that has since grown up around Newcomb, there is often debate
about what exactly counts as “a Newcomb Problem” Does it matter whether
the agent is certain that the prediction will be correct? Does it matter how
the predictor makes its predictions, and whether backward causation (some
sort of information fed backwards from the future) is involved? Perhaps more
importantly, who cares about such a strange and fanciful problem?

But our purpose is not generalized Newcombology—we want to understand
why Newcomb’s Problem spurred the development of Causal Decision Theory.
That can be understood by working with just one version of the problem. Or
better yet, it can be understood by working with a kind of problem that comes
up in everyday life, and is much less fanciful:

I'm standing at the bar, trying to decide whether to order a third appletini.
I reason through my decision as follows: Drinking a third appletini is the
kind of act highly typical of people with addictive personalities. People with
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addictive personalities also tend to become smokers. I'd kind of like to have
another drink, but I really don’t want to become a smoker (smoking causes
lung cancer, is increasingly frowned-upon in my social circle, etc.). So I don’t
order that next appletini.

Let’s work through the reasoning just described using decision theory. First,
stipulate that I have the following utility table:

smoker | non
third —-99 1
appletini
stop —100 0
at two

Ordering the third appletini is a dominant act. But dominance should dictate
preference only when acts and states are independent, and my concern here is
that they’re not. My credence distribution has the following features (with A,
S, and P representing the propositions that I order the appletini, that I become
a smoker, and that I have an addictive personality, respectively):

cr(S| P) > cr(S| ~P) (7.11)
cr(P|A) > cr(P|~A) (7.12)

I'm more confident I'll become a smoker if I have an addictive personality than
ifI don’t. And having that third appletini is a positive indication that I have an
addictive personality. Combining these two equations (and making a couple
more assumptions I won't bother spelling out), we get:

cr(S|A) > cr(S|~A) (7.13)

From my point of view, ordering the third appletini is positively correlated with
becoming a smoker. Looking back at the utility table, I do not consider the
states listed along the top to be probabilistically independent of the acts along
the side. Luckily, Jeffrey’s decision theory works even when acts and states are
dependent. So I apply Jeffrey’s valuation function to calculate expected utilities
for the two acts:

EU,p (A) = =99 - cr(S|A) + 1 - cr(~S|A)

(7.14)
EUgpr(~A) = =100 - cx(S| ~A) + 0 - cx(~S| ~A)
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Looking at these equations, you might think that A receives the higher
expected utility. But I assign a considerably higher value to cr(S|A) than
cr(S| ~A), so the —99 in the top equation is multiplied by a significantly larger
quantity than the —100 in the bottom equation. Assuming the correlation
between S and A is strong enough, ~A receives the higher expected utility and
I prefer to perform ~A.

But this reasoning is all wrong! Whether I have an addictive personality is
(let’s say) determined by genetic factors, not anything I could possibly affect at
this point in my life. The die is cast (so to speak); I either have an addictive
personality or I dont; it’s already determined (in some sense) whether an
addictive personality is going to lead me to become a smoker. Nothing about
this appletini—whether I order it or not—is going to change any of that. So
I might as well enjoy the drink."

Assuming the reasoning in the previous paragraph—rather than the reason-
ing originally presented in the example—is correct, it’s an interesting question
why Jeffrey’s decision theory yields the wrong result. The answer is that on
Jeftrey’s theory, ordering the appletini gets graded down because it would be
bad news about my future. If I order the drink, that’s evidence that I have an
addictive personality (as indicated in Equation (7.12)). Having an addictive
personality is unfortunate because of its potential consequences for becoming
a smoker. I expect the world in which I order another drink to be a worse
world than the world in which I dont, and this is reflected in the EU,,
calculation. Jeftrey’s theory assesses the act of ordering a third appletini not
in terms of outcomes it will cause to come about, but instead in terms of
outcomes it provides evidence for. For this reason Jeffrey’s theory is described
as an Evidential Decision Theory (or “EDT”).

The trouble with Evidential Decision Theory is that an agent’s performing
an act may be evidence of an outcome that it’s too late for her to cause (or
prevent). Even though the act indicates the outcome, it seems irrational to
factor the value of that outcome into a decision about whether to peform the
act. As Skyrms (1980a, p. 129) puts it, my not having the third drink in order to
avoid becoming a smoker would be “a futile attempt to manipulate the cause
by suppressing its symptoms.” In making decisions we should focus on what
we can control—the causal consequences of our acts. Weirich writes:

Deliberations should attend to an act’s causal influence on a state rather than
an act’s evidence for a state. A good decision aims to produce a good outcome
rather than evidence of a good outcome. It aims for the good and not just
signs of the good. Often efficacy and auspiciousness go hand in hand. When
they come apart, an agent should perform an efficacious act rather than an
auspicious act.  (2012)
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addictive personality (P)

smoker (S) third appletini (A)
Figure 7.1 Third drink causal fork

7.3.2 A causal approach

The causal structure of our third drink example is depicted in Figure 7.1. As
we saw in Chapter 3, correlation often indicates causation—but not always.
Propositions on the tines of a causal fork will be correlated even though neither
causes the other. This accounts for A’s being relevant to S on my credence
distribution (Equation (7.13)) even though my ordering the third appletini
has no causal influence on whether I'll become a smoker.

The causally spurious correlation in my credences affects Jeffrey’s expected
utility calculation because that calculation works with credences in states
conditional on acts (cr(S;| A)). Jeftrey replaced Savage’s cr(S;) with this con-
ditional expression to track dependencies between states and acts. The Causal
Decision Theorist responds that while credal correlation is a kind of depen-
dence, it’s not the kind of dependence that decisions should track. Preferences
should be based on causal dependencies. So the Causal Decision Theorist’s
valuation function is:

EU(A) =u(A&S) - cr(Am— S)+u(A&S,) - cx(A D> S,)

(7.15)
+...+u(A&S,) (A S,)

Here AO— S represents the subjunctive conditional “If the agent were to
perform act A, state S would occur’'® Causal Decision Theory uses such
conditionals to track causal relations in the world.!” Of course, an agent may be
uncertain what consequences a given act A would cause. So EU_,;. looks across
the partition {S;, ..., S}, and invokes the agent’s credences that A would cause
various states S; to occur.

For many decision problems, Causal Decision Theory yields the same results
as Evidential Decision Theory. In Jeffrey’s wine example, it’s plausible that

cr(chicken | white) = cr(white O— chicken) = 0.75 (7.16)

The guest’s credence that chicken is served on the condition that she brings
white wine is equal to her credence that if she were to bring white, chicken
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would be served. So one may be substituted for the other in expected utility
calculations, and CDT’s evaluations turn out the same as Jeffrey’s.

But when conditional credences fail to track causal relations (as in cases
involving causal forks), the two theories may yield different results. This is in
part due to their differing notions of independence. EDT treats act A and state
S as independent when they are probabilistically independent relative to the
agent’s credence distribution—that is, when cr(S | A) = cr(S). CDT focuses on
whether the agent takes A and S to be causally independent, which occurs just
when

cr(A o S) = cx(S) (7.17)

When an agent thinks A has no causal influence on S, her credence that S will
occur if she performs A is just her credence that S will occur. In the third drink
example my ordering another appletini may be evidence that I'll become a
smoker, but I know it has no causal bearing on whether I take up smoking.
So from a Causal Decision Theory point of view, the acts and states in that
problem are independent. When acts and states are independent, dominance
reasoning is appropriate, so CDT would have me prefer the dominant act and
order the third appletini.

Now we can return to the Newcomb Problem, focusing on a version of it
that distinguishes Causal from Evidential Decision Theory. Suppose that the
“being” in Nozick’s story makes its prediction by analyzing your brain state
prior to your making the decision and applying a complex neuro-psychological
theory. The being’s track record makes you 99% confident that its predictions
will be correct. And to simplify matters, let’s suppose you assign exactly 1 util
to each dollar, no matter how many dollars you already have. Then your utility
and credence matrices for the problem are:

Utilities Credences
P, p, P, P,
T, | 1,000,000 0 T, | 0.99 | 0.01
T, | 1,001,000 | 1,000 T, | 0.01 | 0.99

where T, and T, represent the acts of taking one box or two boxes (respec-
tively), and P; and P, represent the states of what the being predicted.
Jefrey calculates expected values for the acts as follows:
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brain state

prediction boxes taken

Figure 7.2 Newcomb Problem causal fork

EU,,.(T)) = u(Ty & P,) - cr(P, | T}) + u(T; & P,) - cr(Py | T;) = 990, 000
EUpp(T2) = w(Ty & Py) - cx(Py | T2) + w(T, & Py) - cr(P, | T;) = 11,000
(7.18)

So Evidential Decision Theory recommends one-boxing. Yet we can see from
Figure 7.2 that this version of the Newcomb Problem contains a causal fork;
the being’s prediction is based on your brain state, which also has a causal
influence on the number of boxes you take. This should make us suspicious
of EDT’s recommendations. The agent’s act and the being’s prediction are
probabilistically correlated in the agent’s credences, as the credence table
reveals. But that’s not because the number of boxes taken has any causal
influence on the prediction.

Causal Decision Theory calculates expected utilities in the example like this:

EU . (T}) = u(T; & Py) - cr(Ty O— Py)) + w(Ty & P,) - cx(T, O— P,)
= 1,000,000 - cr(T, O P;) + 0 - cr(T, O P,)

EUCDT(TZ) = u(T2 & Pl) . Cr(T2 [ Pl) + u(T2 & P2) . CI‘(T2 [ P2)
= 1,001,000 - cr(T, O P,) + 1,000 - cr(T, O P,)
(7.19)

It doesn’t matter what particular values the credences in these expressions take,
because the act has no causal influence on the prediction. That is,

cr(T, o> Py) = cr(P;) = cr(T, o> Py) (7.20)

and

cr(T, o> P,) = cr(P,) = cr(T, o> P,) (7.21)
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With these causal independencies in mind, you can tell by inspection of
Equation (7.19) that EU.,.(T,) will be greater than EU_,.(T}), and Causal
Decision Theory endorses two-boxing.!®

7.3.3 Responses and extensions

So is that it for Evidential Decision Theory? Philosophical debates rarely end
cleanly; Evidential Decision Theorists have made a number of responses to the
Newcomb Problem.

First, one might respond that one-boxing is the rationally mandated act.
Representing the two-boxers, David Lewis once wrote:

The one-boxers sometimes taunt us: if youre so smart, why aincha rich?
They have their millions and we have our thousands, and they think this goes
to show the error of our ways. They think we are not rich because we have
irrationally chosen not to have our millions. (1981b, p. 377)

Lewis’s worry is this: Suppose a one-boxer and a two-boxer each go through
the Newcomb scenario many times. As a highly accurate predictor, the being
in the story will almost always predict that the one-boxer will one-box, and so
place the $1,000,000 in the second box for him. Meanwhile, the two-boxer will
almost always find the second box empty. The one-boxer will rack up millions
of dollars, while the two-boxer will gain only thousands. Each agent has the
goal of making as much money as possible, so one-boxing (and, by extension,
EDT) seems to provide a better rational strategy for reaching one’s goals than
two-boxing (and CDT).

The Causal Decision Theorist’s response (going at least as far back as
Gibbard and Harper 1978/1981) is that some unfortunate situations reward
agents monetarily for behaving irrationally, and the Newcomb Problem is one
of them. The jury is still out on whether this response is convincing. In Novem-
ber 2009, the PhilPapers Survey polled over three thousand philosophers,
and found that 31.4% of them accepted or leaned toward two-boxing in the
Newcomb Problem, while 21.3% accepted or leaned toward one-boxing. (The
remaining respondents were undecided or offered a different answer.) So not
everyone considers EDT’s embrace of one-boxing a fatal defect. Meanwhile,
there are other cases in which EDT seems to give the intuitively rational result
while CDT does not (Egan 2007).
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Jeftrey, on the other hand, was convinced that two-boxing is rationally
required in the Newcomb Problem. So he tried to reconcile Evidential Deci-
sion Theory with that verdict in a variety of ways. In the second edition of The
Logic of Decision (1983), Jeffrey added a ratifiability condition to his EDT.
Ratifiability holds that an act is rationally permissible only if the agent assigns
it the highest expected utility conditional on the supposition that she chooses
to perform it. Ratifiability avoids regret—if choosing to perform an act would
make you wish youd done something else, then you shouldn't choose it. In
the Newcomb Problem, supposing that you’ll choose to one-box makes you
confident that the being predicted one-boxing, and so makes you confident
that the $1,000,000 is in the second box. So supposing that you'll choose to
one-box makes two-boxing seem the better choice. One-boxing is unratifiable,
and so can be rationally rejected.

We won't cover the technical details of ratifiability here, in part because
Jeffrey ultimately abandoned that response. Jeftrey eventually (1993, 2004)
came to believe that the Newcomb Problem isn’t really a decision problem,
and therefore isn’t the kind of thing against which a decision theory (like EDT)
should be tested. Suppose that in the Newcomb Problem the agent assigns the
credences we described earlier because she takes the causal structure of her
situation to be something like Figure 7.2. In that case, she will see her physical
brain state as having such a strong influence on how many boxes she takes that
whether she one-boxes or two-boxes will no longer seem like a free choice.
Jeffrey held that in order to make a genuine decision, an agent must see her
choice as the cause of the act (and ultimately the outcome) produced. Read in
this light, the Newcomb case seemed to involve too much causal influence on
the agent’s act from factors beyond her choice. In the final sentences of his last
work, Jeffrey wrote, “I now conclude that in Newcomb problems, ‘One box or
two?’ is not a question about how to choose, but about what you are already
set to do, willy-nilly. Newcomb problems are not decision problems” (2004,
p. 113).

7.4 Exercises

Unless otherwise noted, you should assume when completing these exercises
that the credence distributions under discussion satisfy the probability axioms
and Ratio Formula. You may also assume that whenever a conditional cre-
dence expression occurs, the needed proposition has nonzero unconditional
credence so that conditional probabilities are well defined.
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Problem 7.1. 2 When you play craps in a casino there are a number of

different bets you can make at any time. Some of these are “proposition bets”

on the outcome of the next roll of two fair dice. Below is a list of some

proposition bets, and the odds at which casinos offer them:

Name of bet | Wins when Odds paid
Big red Dice total 7 4:1

Any craps Dicetotal 2,3,0r12 | 7 : 1
Snake eyes | Dice total 2 30 : 1

Suppose you place a $1 bet on each proposition at the odds listed above. Rank

the three bets from highest expected net return to lowest.

Problem 7.2. 2 Suppose you're guarding Stephen Curry in an NBA game and

he is about to attempt a three-point shot. You have to decide whether to foul

him in the act of shooting.

(a)

If you don’t foul him, he will attempt the shot. During the 2014-15 NBA
season, Steph Curry made 44.3% of his three-point shot attempts. What
is the expected number of points you will yield on Curry’s shot attempt
if you decide not to foul him?

(b) Suppose that if you decide to foul Curry, you can ensure he doesn’t get

(0)

a three-point shot attempt off. However, your foul will send him to the
free-throw line, where he will get three attempts, each worth one point
if he makes it. During the 2014-15 NBA season, Curry made 91.4% of
his free-throw attempts. Assuming that the result of each free-throw
attempt is probabilistically independent of the results of all the others,
what is the expected number of points you will yield on Curry’s free
throws if you foul him?

Given your calculations from parts (a) and (b), should you foul Steph
Curry when he attempts a three-pointer?

Problem 7.3. The St. Petersburg game is played as follows: A fair coin is flipped

repeatedly until it comes up heads. If the coin comes up heads on the first toss,

the player wins $2. Heads on the second toss pays $4, heads on the third toss

pays $8, etc.!

(a)

2 If you assign fair prices equal to expected monetary payouts (and
credences equal to objective chances), how much should you be willing
to pay to play the St. Petersburg game?
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(b) # If you were confronted with this game in real life, how much would
you be willing to pay to play it? Explain your answer.

Problem 7.4. 9 Asked to justify his decision to bring along his chicken-
replace-inator, Dr. Doofenshmirtz replies: “Id rather have it and not need it
than need it and not have it”

(a) Supposing the relevant states of the world are N (need-replace-inator)
and ~N, and the relevant acts are B (bring-replace-inator) and ~B, what
two outcomes is Doofenshmirtz referencing, and how is he claiming
their utilities compare for him?

(b) Explain why on Savage’s utility theory, this fact about Doofenshmirtz’s
utilities does not necessarily make his decision rationally permissible.

Problem 7.5. 2 Consider once again the utility table for the umbrella decision
problem on page 255. Given this utility distribution, how confident would you
need to be in rain for Savage’s decision theory to recommend that you take
your umbrella?

Problem 7.6. 2 Imagine there’s some proposition P in which I'm highly
interested (and whose truth I view as probabilistically independent of my
behavior). Learning of my interest, a nefarious character offers to sell me the
following betting ticket for $0.70:

This ticket entitles the bearer
to $1 if P is true,
and nothing otherwise.

(a) For my fair betting price for this ticket to be exactly $0.70, what would
my credence in P have to be?

(b) The nefarious character also has a second ticket available, which he
offers to sell me for $0.70 as well:

This ticket entitles the bearer
to $1 if ~P is true,
and nothing otherwise.

For my fair betting price in this second ticket to be exactly $0.70, what
would my credence in ~P have to be?

(c) Suppose I throw caution to the wind and purchase both tickets, each at
a price of $0.70. Without knowing my actual credences in Pand ~P, can
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you nevertheless calculate my expected fotal monetary value for the two
tickets combined—taking into account both what I spent to get them
and what they might pay out?

Problem 7.7. 99
(a) Suppose an agent is indifferent between two gambles with the following
utility outcomes:
P | ~P
Gamblel | x | y

Gamble2 | y | «x

where P is a proposition about the state of the world, and x and y are
utility values with x # y. Assuming this agent maximizes EU,,, what
can you determine about the agent’s cr(P)?

(b) Suppose the same agent is also indifferent between these two gambles:

P | ~P
Gamble3 | d | w
Gamble4 | m | m

where cr(P) = cr(~P), d =100, and w = —100. What can you determine
about m?
(c) Finally, suppose the agent is indifferent between these two gambles:

Q| ~Q
Gamble5 | r s
Gamble 6 | ¢ t

where r =100, s = 20, and ¢ = 80. What can you determine about cr(Q)?

Problem 7.8. 22 You are confronted with a decision problem involving two
possible states of the world (S and ~S) and three available acts (A, B, and C).

(a) Suppose that of the three S-outcomes, B & S does not have the highest
utility for you. Also, of the three ~S-outcomes, B & ~S does not have
the highest utility. Applying Savage’s decision theory, does it follow that
you should not choose act B? Defend your answer.

(b) Suppose that of the S-outcomes, B& S has the lowest utility for you. Also,
of the three ~S-outcomes, B & ~S has the lowest utility. Still applying
Savage’s decision theory, does it follow that you should not choose act
B? Defend your answer.
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(c) Suppose now that you apply Jeffrey’s decision theory to the situation in
part (b). Do the same conclusions necessarily follow about whether you
should choose act B? Explain.?’

Problem 7.9. 22 Suppose an agent faces a decision problem with two acts A
and B and finitely many states.
(a) Prove that if the agent sets her preferences using EUy,,, those prefer-
ences will satisfy the Dominance Principle.
(b) If the agent switches from EUg,, to EU,,, exactly where will your proof
from part (a) break down?

Problem 7.10. 22 Referring to the payoff tables for Allais’ Paradox in Section
7.2.4, show that no assignment of values to u($0), u($1M), and u($5M) that
makes EU,,.(A) > EU,,.(B) will also make EU, (D) > EU_,.(C). (You may
assume that the agent assigns equal credence to each numbered ticket’s being
selected, and this holds regardless of which gamble is made.)

Problem 7.11. 29 Having gotten a little aggressive on a routine single to
center field, youre now halfway between first base and second base. You must
decide whether to proceed to second base or run back to first.

The throw from the center fielder is in midair, and given the angle you can’t
tell whether it’s headed to first or second base. But you do know that this
center fielder has a great track-record at predicting where runners will go—
your credence in his throwing to second conditional on your going there is
90%, while your credence in his throwing to first conditional on your going to
first is 80%.

If you and the throw go to the same base, you will certainly be out, but if
you and the throw go to different bases you'll certainly be safe. Being out has
the same utility for you no matter where you're out. Being safe at first is better
than being out, and being safe at second is better than being safe at first by the
same amount that being safe at first is better than being out.

(a) Of the two acts available (running to first or running to second), which
should you prefer according to Evidential Decision Theory (that is,
accoring to Jeffrey’s decision theory)?

(b) Does the problem provide enough information to determine which
act is preferred by Causal Decision Theory? If so, explain which act is
preferred. If not, explain what further information would be required
and how it could be used to determine a preference.
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Problem 7.12. # In the Newcomb Problem, do you think it’s rational to take
just one box or take both boxes? Explain your thinking.

7.5 Further reading

INTRODUCTIONS AND OVERVIEWS

Michael D. Resnik (1987). Choices: An Introduction to Decision Theory.
Minneapolis: University of Minnesota Press

Martin Peterson (2009). An Introduction to Decision Theory. Cambridge
Introductions to Philosophy. Cambridge: Cambridge University Press

Each of these provides a book-length general introduction to decision theory,
including chapters on game theory and social choice theory.

Crassic TEXTS
Leonard J. Savage (1954). The Foundations of Statistics. New York: Wiley

Savage’s classic book laid the foundations for modern decision theory and
much of contemporary Bayesian statistics.

Richard C. Jeftrey (1983). The Logic of Decision. 2nd edition. Chicago:
University of Chicago Press

In the first edition, Jeffrey’s Chapter 1 introduced a decision theory capable
of handling dependent acts and states. In the second edition, Jeftrey added
an extra section to this chapter explaining his “ratifiability” response to the
Newcomb Problem.

EXTENDED DisCcUSSION

Lara Buchak (2013). Risk and Rationality. Oxford: Oxford University Press

Presents a generalization of the decision theories discussed in this chapter that
is consistent with a variety of real-life agents’ responses to risk. For instance,
Buchak’s theory accommodates genuine risk-aversion, and allows agents to

€20 Joquieidag g0 uo Jasn salelqr LIN Ad 915/6/GE/191deyd/g L6 1 #/4000/wod dno oiwspese)/:sdjy Wwolj papeojumoq



NOTES 277

simultaneously prefer Gamble A to Gamble B and Gamble D to Gamble C in
Allais’ Paradox.

James M. Joyce (1999). The Foundations of Causal Decision Theory. Cam-
bridge: Cambridge University Press

A systematic explanation and presentation of causal decision theory, unifying
that approach under a general framework with evidential decision theory and
proving a representation theorem that covers both.

Notes

1. The law of large numbers comes in many different forms, each of which has slightly
different conditions and a slightly different conclusion. Most versions require the
repeated trials to be independent and identically distributed (IID), meaning that each
trial has the same probability of yielding a given result and the result on a given
trial is independent of all previous results. (In other words, you think our batter is
consistent across games and unaffected by previous performance.) Most versions also
assume Countable Additivity for their proof. Finally, since we are dealing with results
involving the infinite, we should remember that in this context credence 1 doesn’t
necessarily mean certainty. An agent who satisfies the probability axioms, the Ratio
Formula, and Countable Additivity will assign credence 1 to the average’s approaching
the expectation in the limit, but that doesn’t mean she rules out all possibilities in which
those values don’t converge. (For Countable Additivity and cases of credence-1 that
don’t mean certainty, see Section 5.4. For more details and proofs concerning laws of
large numbers, see Feller 1968, Ch. X.)

2. See Bernoulli (1738/1954) for both his discussion and a reference to Cramer.

3. The first money pump was presented by Davidson, McKinsey, and Suppes (1955,
p. 146), who attributed the inspiration for their example to Norman Dalkey. I don’t
know who introduced the “money pump” terminology.

By the way, if you've ever read Dr. Seuss’s story “The Sneetches”, the Fix-it-Up Chappie
(Sylvester McMonkey McBean) gets a pretty good money pump going before he packs
up and leaves.

4. Though Quinn (1990) presents a case (“the puzzle of the self-torturer”) in which it may
be rational for an agent to have intransitive preferences.

5. While Savage thought of acts as functions from states to outcomes, it will be simpler for
us to treat acts, states, and outcomes as propositions—the proposition that the agent
will perform the act, the proposition that the world is in a particular state, and the
proposition that a particular outcome occurs.

6. For simplicity’s sake we set aside cases in which some S; make particular acts impossible.
Thus A & S; will never be a contradiction.

7. The Dominance Principle I've presented is sometimes known as the Strong Dominance
Principle. The Weak Dominance Principle says that if A produces at least as good an
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10.

11.

12.

13.

outcome as B in each possible state of the world, plus a better outcome in at least one
possible state of the world, then A is preferred to B. The names of the principles can be a
bit confusing—it’s not that Strong Dominance is a stronger principle; it’s that it involves a
stronger kind of dominance. In fact, the Weak Dominance Principle is logically stronger
than the Strong Dominance Principle, in the sense that the Weak Dominance Principle
entails the Strong Dominance Principle. (Thanks to David Makinson for suggesting this
clarification.)

Despite being a logically stronger principle, Weak Dominance is also a consequence

of Savage’s expected utility theory, and has the same kinds of problems as Strong
Dominance.
In a similar display of poor reasoning, Shakespeare’s Henry V (Act 4, Scene 3) responds
to Westmoreland’s wish for more troops on their side of the battle—“O that we now had
here but one ten thousand of those men in England, that do no work today”—with the
following:

If we are marked to die, we are enough to do our country loss;
and if to live, the fewer men, the greater share of honor.
God’s will, I pray thee wish not one man more.

For a brief discussion and references, see Jeffrey (1983, § 1.8).

Instead of referring to “acts”, “states”, “outcomes”, and “utilities”, Jeffrey speaks of “acts”,
“conditions’, “consequences”, and “desirabilities” (respectively). As in my presentation
of Savage’s theory, I have made some changes to Jeffrey’s approach for the sake of
simplicity, and consistency with the rest of the discussion.

The decision-theoretic structure here bears striking similarities to Simpson’s Paradox.
We saw in Section 3.2.3 that while DeMar DeRozan had a better overall field-goal
percentage than James Harden during the 2016-17 NBA season, from each distance
(two-pointer versus three-pointer) Harden was more accurate. This was because a much
higher proportion of DeRozan’s shot attempts were two-pointers, which are much
easier to make. So if you selected a DeRozan attempt at random, it was much more
likely than a Harden attempt to have been a two-pointer, and so much more likely
to have been made. Similarly, the deterrence utility table shows that disarming yields
better outcomes than arming on each possible state of the world. Yet arming is much
more likely than disarming to land you in the peace state (the right-hand column of the
table), and so get you a desirable outcome.

While Savage coined the phrase “Sure-Thing Principle’, it’s actually a bit difficult to tell
from his text exactly what he meant by it. I've presented a contemporary cleaning-up
of Savage’s discussion, inspired by the Sure-Thing formulation in Eells (1982, p. 10).
It’s also worth noting that the Sure-Thing Principle is intimately related to decision-
theoretic principles known as Separability and Independence, but we won't delve into
those here.

Heukelom (2015) provides an accessible history of the Allais Paradox, and of Allais’
disputes with Savage over it. Another well-known counterexample to Savage’s deci-
sion theory based on risk aversion is the Ellsberg Paradox, which we'll discuss in
Section 14.1.3.
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In case you're looking for a clever way out of Newcomb’s Problem, Nozick specifies in a
footnote that if the being predicts you will decide what to do via some random process
(like flipping a coin), he does not put the $1,000,000 in the second box.

Eells (1982, p. 91) gives a parallel example from theology: “Calvinism is sometimes
thought to involve the thesis that election for salvation and a virtuous life are effects of a
common cause: a certain kind of soul. Thus, while leading a virtuous life does not cause
one to be elected, still the probability of salvation is higher conditional on a virtuous
life than conditional on an unvirtuous life. Should one lead a virtuous life?”

It's important for Causal Decision Theory that A 0— S conditionals be “causal” coun-
terfactuals rather than “backtracking” counterfactuals; we hold facts about the past
fixed when assessing A’s influence on S. (See Lewis 1981a for the distinction and some
explanation.)

There are actually many ways of executing a causal decision theory; the approach
presented here is that of Gibbard and Harper (1978/1981), drawing from Stalnaker
(1972/1981). Lewis (1981a) thought Causal Decision Theory should instead return
to Savage’s unconditional credences and independence assumptions, but with the
specification that acts and states be causally independent. For a comparison of these
approaches along with various others, plus a general formulation of Causal Decision
Theory that attempts to cover them all, see Joyce (1999).

If you feel like Newcomb’s Problem is too fanciful and our appletini example too
frivolous to merit serious concern, consider that Gallo et al. (2018) found substantial
evidence that smoking more cigarettes or smoking for a longer time is correlated with
a decreased risk of developing Parkinson’s disease. If Reichenbach’s Principle of the
Common Cause (Section 3.2.4) is true, then either smoking has a causal effect on
whether one develops Parkinsons, Parkinson’s somehow affects whether one smokes,
or some other cause makes one both more likely to smoke and less likely to develop
Parkinson’s. Pursuing this third, causal-fork option, the researchers speculated that a
dopamine shortage in the brain might contribute both to Parkinson’s and to a “low-risk-
taking personality trait” that makes people less likely to smoke or more likely to quit. If
that’s right, then should you take up smoking to avoid Parkinson’s? Other studies have
found that high levels of education correlate positively with developing Parkinson’s
(Frigerio et al. 2005). Should you cut short your education to avoid the disease?

This game was invented by Nicolas Bernoulli in the eighteenth century.

This problem was inspired by a problem of Brian Weatherson’s.
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