
2
Probability Distributions

This chapter introduces Kolmogorov’s probability axioms, the first three core
normative rules of Bayesian epistemology. They represent constraints that an
agent’s unconditional credence distribution at a given time must satisfy in
order to be rational.

The chapter begins with a quick overview of propositional and predicate
logic.The goal is to remind readers of logical notation and terminology we will
need later; if this material is new to you, you can learn it from any introductory
logic text. Next I introduce the notion of a numerical distribution over a
propositional language, the tool Bayesians use to represent an agent’s degrees
of belief. Then I present the probability axioms, which are mathematical
constraints on such distributions.

Once the probability axioms are on the table, I point out some of their
more intuitive consequences. The probability calculus is then used to analyze
the Lottery Paradox scenario from Chapter 1, and Tversky and Kahneman’s
Conjunction Fallacy example.

Kolmogorov’s axioms are the canonical way of defining what it is to be a
probability distribution, and they are useful for doing probability proofs. Yet
there are other, equivalent mathematical structures that Bayesians often use to
illustrate points and solve problems. After presenting the axioms, this chapter
describes how toworkwith probability distributions in three alternative forms:
Venn diagrams, probability tables, and odds.

I end the chapter by explaining what I think are the most distinctive
elements of probabilism, and how probability distributions go beyond what
one obtains from a comparative confidence ranking.

2.1 Propositions and propositional logic

Following the discussion in Chapter 1, we will assume that degrees of belief
are propositional attitudes—they are attitudes agents assign to propositions.1

In any particular application we will be interested in the degrees of belief an
agent assigns to the propositions in some language ℒ. ℒ will contain a finite
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© Michael G. Titelbaum 2022. DOI: 10.1093/oso/9780198707608.003.0002

D
ow

nloaded from
 https://academ

ic.oup.com
/book/41943/chapter/355048568 by M

IT Libraries user on 08 Septem
ber 2023



26 probability distributions
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Figure 2.1 The space of possible worlds

number of atomic propositions, which we will usually represent with capital
letters (P, Q, R, etc.).

The rest of the propositions in ℒ are constructed in standard fashion from
atomic propositions using five propositional connectives: ∼, &, ∨, ⊃, and ≡.
A negation ∼P is true just in case P is false. A conjunction P & Q is true
just in case its conjuncts P and Q are both true. “∨” represents inclusive “or”;
a disjunction P∨Q is false just in case its disjuncts P andQ are both false. “⊃”
represents the material conditional; P ⊃ Q is false just in case its antecedent
P is true and its consequentQ is false. Amaterial biconditional P ≡ Q is true
just in case P and Q are both true or P and Q are both false.

Philosophers sometimes think about propositional connectives using sets of
possible worlds. Possible worlds are somewhat like the alternate universes to
which characters travel in science-fiction stories—events occur in a possible
world, but they may be different events than occur in the actual world (the
possible world in whichwe live). Possible worlds aremaximally specified, such
that for any event and any possible world that event either does or does not
occur in that world. And the possible worlds are plentiful enough such that
for any combination of events that could happen, there is a possible world in
which that combination of events does happen.

We can associate with each proposition the set of possible worlds in which
that proposition is true. Imagine that in the Venn diagram of Figure 2.1
(named after a logical technique developed by John Venn), the possible worlds
are represented as points inside the rectangle. Proposition P might be true in
some of thoseworlds, false in others.We can draw a circle around all theworlds
in which P is true, label it P, and then associate proposition P with the set of
all possible worlds in that circle (and similarly for proposition Q).

The propositional connectives can also be thought of in terms of possible
worlds. ∼P is associated with the set of all worlds lying outside the P-circle.
P&Q is associated with the set of worlds in the overlap of the P-circle and the
Q-circle. P ∨ Q is associated with the set of worlds lying in either the P-circle
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2.1 propositions and propositional logic 27
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Figure 2.2 The set of worlds associated with P ∨ Q

or the Q-circle. (The set of worlds associated with P ∨ Q has been shaded in
Figure 2.2 for illustration.) P ⊃ Q is associated with the set containing all the
worlds except those that lie both inside the P-circle and outside the Q-circle.
P ≡ Q is associated with the set of worlds that are either in both the P-circle
and the Q-circle or in neither one.2

Warning

I keep saying that a proposition can be “associated” with the set of possible
worlds in which that proposition is true. It’s tempting to think that the
proposition just is that set of possible worlds, but we will avoid that tempta-
tion. Here’s why: The way we’ve set things up, any two logically equivalent
propositions (such as P and ∼P ⊃ P) are associated with the same set of
possible worlds. So if propositions just were their associated sets of possible
worlds, P and ∼P ⊃ P would be the same proposition. Since we’re taking
credences to be assigned to propositions, that would mean that of necessity
every agent assigns P and∼P ⊃ P the same credence. Eventually we’re going
to suggest that if an agent assigns P and ∼P ⊃ P different credences, she’s
making a rational mistake. But we want our formalism to deem it a rational
requirement that agents assign the same credence to logical equivalents,
not a necessary truth. It’s useful to think about propositions in terms of
their associated sets of possible worlds, so we will continue to do so. But
to keep logically equivalent propositions separate entities we will not say
that a proposition just is a set of possible worlds.

Before we discuss relations among propositions, a word about notation. I said
we will use capital letters to represent specific atomic propositions. We will
also use capital letters as metavariables ranging over propositions. I might say,
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28 probability distributions

“If P entails Q, then . . .”. Clearly the atomic proposition P doesn’t entail the
atomic proposition Q. So what I’m saying in such a sentence is “Suppose
we have one proposition (which we’ll call ‘P’ for the time being) that entails
another proposition (which we’ll call ‘Q’). Then . . .”. At first it may be con-
fusing sorting atomic proposition letters from metavariables, but context will
hopefully make my usage clear. (Look out especially for phrases like: “For any
propositions P and Q . . .”.)3

2.1.1 Relations among propositions

Propositions P and Q are equivalent just in case they are associated with the
same set of possible worlds—in each possible world, P is true just in case Q is.
In that case I will write “P ⫤⊨ Q”. P entails Q (“P ⊨ Q”) just in case there is
no possible world in which P is true butQ is not. On a Venn diagram, P entails
Q when the P-circle is entirely contained within the Q-circle. (Keep in mind
that one way for the P-circle to be entirely contained in theQ-circle is for them
to be the same circle! When P is equivalent to Q, P entails Q and Q entails P.)
P refutes Q just in case P ⊨ ∼Q. When P refutes Q, every world that makes
P true makes Q false.4

For example, suppose I have rolled a six-sided die. The proposition that the
die came up six entails the proposition that it came up even. The proposition
that the die came up six refutes the proposition that it came up odd. The
proposition that the die came up even is equivalent to the proposition that
it did not come up odd—and each of those propositions entails the other.
P is a tautology just in case it is true in every possible world. In that case

we write “⊨ P”. I will sometimes use the symbol “T” to stand for a tautology.
A contradiction is false in every possible world. I will sometimes use “F” to
stand for a contradiction. A contingent proposition is neither a contradiction
nor a tautology.

Finally, we have properties of proposition sets of arbitrary size. The propo-
sitions in a set are consistent if there is at least one possible world in which all
of those propositions are true. The propositions in a set are inconsistent if no
world makes them all true.

The propositions in a set aremutually exclusive if no possible world makes
more than one of them true. Put anotherway, each proposition in the set refutes
each of the others. (For any propositions P and Q in the set, P ⊨ ∼Q.) The
propositions in a set are jointly exhaustive if each possible world makes at
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Figure 2.3 Four mutually exclusive, jointly exhaustive regions

least one of the propositions in the set true. In other words, the disjunction of
all the propositions in the set is a tautology.

We will often work with proposition sets whose members are both mutually
exclusive and jointly exhaustive. A mutually exclusive, jointly exhaustive set of
propositions is called a partition. Intuitively, a partition is a way of dividing
up the available possibilities. For example, in our die-rolling example the
proposition that the die came up odd and the proposition that the die came
up even together form a partition. When you have a partition, each possible
world makes exactly one of the propositions in the partition true. On a Venn
diagram, the regions representing the propositions in a partition combine to
fill the entire rectangle without overlapping at any point.

2.1.2 State-descriptions

Suppose we are working with a language that has just two atomic propositions,
P and Q. Looking back at Figure 2.1, we can see that these propositions divide
the space of possible worlds into four mutually exclusive, jointly exhaustive
regions. Figure 2.3 labels those regions s1, s2, s3, and s4. Each of the regions
corresponds to one of the lines in the following truth-table:

P Q state-description
s1 T T P & Q
s2 T F P & ∼Q
s3 F T ∼P & Q
s4 F F ∼P & ∼Q

Each line on the truth-table can also be described by a kind of proposition
called a state-description. A state-description in language ℒ is a conjunction
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30 probability distributions

in which (1) each conjunct is either an atomic proposition ofℒ or its negation;
and (2) each atomic proposition of ℒ appears exactly once. For example,
P & Q and ∼P & Q are each state-descriptions. A state-description suc-
cinctly describes the possible worlds associated with a line on the truth-table.
For example, the possible worlds in region s3 are just those in which P is
false and Q is true; in other words, they are just those in which the state-
description∼P&Q is true. Given any language, its state-descriptions will form
a partition.5

Notice that the state-descriptions available for use are dependent on the
language we are working with. If instead of language ℒ we are working with a
language ℒ′ containing three atomic propositions (P, Q, and R), we will have
eight state-descriptions available instead of ℒ’s four. (You’ll work with these
eight state-descriptions in Exercise 2.1. For now we’ll go back to working with
language ℒ and its paltry four.)

Every non-contradictory proposition in a language has an equivalent that
is a disjunction of state-descriptions. We call this disjunction the proposition’s
disjunctive normal form. For example, the proposition P∨Q is true in regions
s1, s2, and s3. Thus

P ∨ Q ⫤⊨ (P & Q) ∨ (P & ∼Q) ∨ (∼P & Q) (2.1)

The proposition on the right-hand side is the disjunctive normal form equiv-
alent of P ∨ Q. To find the disjunctive normal form of a non-contradictory
proposition, figure out which lines of the truth-table it’s true on, then make a
disjunction of the state-descriptions associated with each such line.6

2.1.3 Predicate logic

Sometimes we will want to work with languages that represent objects and
properties. To do so, we first identify a universe of discourse, the total set
of objects under discussion. Each object in the universe of discourse will be
represented by a constant, whichwill usually be a lower-case letter (a, b, c, . . .).
Properties of those objects and relations among them will be represented by
predicates, which will be capital letters.

Relations among propositions in such a language are exactly as described
in the previous sections, except that we have two new kinds of propositions.
First, our atomic propositions are now generated by applying a predicate
to a constant, as in “Fa”. Second, we can generate quantified sentences, as
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2.2 the probability axioms 31

in “(∀x)(Fx⊃∼Fx)”. Since we will rarely be using predicate logic, I won’t
work through the details here; a thorough treatment can be found in any
introductory logic text.

I do want to emphasize, though, that as long as we restrict our attention to
finite universes of discourse, all the logical relations we need can be handled by
the propositional machinery discussed above. If, say, our only two constants
are a and b and our only predicate is F, then the only atomic propositions inℒ
will be Fa and Fb, for which we can build a standard truth-table:

Fa Fb state-description
T T Fa & Fb
T F Fa & ∼Fb
F T ∼Fa & Fb
F F ∼Fa & ∼Fb

For any proposition in this language containing a quantifier, we can find
an equivalent composed entirely of atomic propositions and propositional
connectives. To do this we need the notion of a substitution instance:
a substitution instance of a quantified sentence is produced by removing
the quantifier and replacing its variable throughout what remains with the
same constant. (So, for example, Fa⊃∼Fa is a substitution instance of
(∀x)(Fx⊃∼Fx).) A universally quantified sentence is equivalent to a
conjunction of all its substitution instances for constants in ℒ, while an
existentially quantified sentence is equivalent to a disjunction of its substitution
instances. For example, when our only two constants are a and b we have:

(∀x)(Fx ⊃ ∼Fx) ⫤⊨ (Fa ⊃ ∼Fa) & (Fb ⊃ ∼Fb) (2.2)
(∃x)Fx ⫤⊨ Fa ∨ Fb (2.3)

As long as we stick to finite universes of discourse, every proposition will have
an equivalent that uses only propositional connectives. So even when we work
in predicate logic, every non-contradictory propositionwill have an equivalent
in disjunctive normal form.

2.2 The probability axioms

A distribution over language ℒ assigns a real number to each proposition in
the language.7 Bayesians represent an agent’s degrees of belief as a distribution
over a language; I will use “cr” to symbolize an agent’s credence distribution.
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32 probability distributions

For example, if an agent is 70% confident that it will rain tomorrow, we will
write

cr(R) = 0.7 (2.4)

where R is the proposition that it will rain tomorrow. Another way to put this
is that the agent’s unconditional credence in rain tomorrow is 0.7. (Uncon-
ditional credences contrast with conditional credences, which we will discuss
in Chapter 3.) The higher the numerical value of an agent’s unconditional
credence in a proposition, themore confident the agent is that that proposition
is true.

Bayesians hold that a rational credence distribution satisfies certain rules.
Among these are our first three core rules, Kolmogorov’s axioms:

Non-Negativity: For any proposition P in ℒ, cr(P) ⩾ 0.
Normality: For any tautology T in ℒ, cr(T) = 1.
Finite Additivity: For any mutually exclusive propositions P and Q in ℒ,

cr(P ∨ Q) = cr(P) + cr(Q).

Kolmogorov’s axioms are often referred to as “the probability axioms”.
Mathematicians call any distribution that satisfies these axioms a probability
distribution. Kolmogorov (1933/1950) was the first to articulate these axioms
as the foundation of mathematical probability theory.8

Warning

Kolmogorov’s work inaugurated a mathematical field of probability theory
distinct from the philosophical study of what probability is. While this was
an important advance, it gave the word “probability” a special meaning in
mathematical circles that can generate confusion elsewhere.

For a twenty-first-century mathematician, Kolmogorov’s axioms define
what it is for a distribution to be a “probability distribution”. This is distinct
from the way people use “probability” in everyday life. For one thing, the
word “probability” in English may not mean the same thing in every use.
And even if it does, it would be a substantive philosophical thesis that
probabilities (in the everyday sense) can be represented by a numerical
distribution satisfying Kolmogorov’s axioms. Going in the other direction,
there are numerical distributions satisfying the axioms that don’t count
as “probabilistic” in any ordinary sense. For example, we could invent a
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2.2 the probability axioms 33

distribution “tv” that assigns 1 to every true proposition and 0 to every
false proposition. To amathematician, the fact that tv satisfies Kolmogorov’s
axioms makes it a probability distribution. But a proposition’s tv-value
might not match its probability in the everyday sense. Improbable propo-
sitions can turn out to be true (I just rolled snake-eyes!), and propositions
with high probabilities can turn out to be false (the Titanic should’ve made
it to port).

Probabilism is the philosophical view that rationality requires an agent’s
credences to form a probability distribution (that is, to satisfy Kolmogorov’s
axioms). Probabilism is attractive in part because it has intuitively appealing
consequences. For example, from the probability axioms we can prove:

Negation: For any proposition P in ℒ, cr(∼P) = 1 − cr(P).

According to Negation, rationality requires an agent with cr(R) = 0.7 to have
cr(∼R) = 0.3. Among other things, Negation embodies the sensible thought
that if you’re highly confident that a proposition is true, you should be dubious
that its negation is.

Usually I’ll leave it as an exercise to prove that a particular consequence
follows from the probability axioms, but here I will prove Negation as an
example for the reader.

Negation Proof:
Claim Justification

(1) P and ∼P are mutually exclusive logic
(2) cr(P ∨ ∼P) = cr(P) + cr(∼P) (1), Finite Additivity
(3) P ∨ ∼P is a tautology logic
(4) cr(P ∨ ∼P) = 1 (3), Normality
(5) 1 = cr(P) + cr(∼P) (2), (4)
(6) cr(∼P) = 1 − cr(P) (5), algebra

2.2.1 Consequences of the probability axioms

Below are a number of further consequences of the probability axioms. Again,
these consequences are listed in part to illustrate intuitive things that follow
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34 probability distributions

from the axioms. But I’m also listing them because they’ll be useful in future
proofs.

Maximality: For any proposition P in ℒ, cr(P) ⩽ 1.
Contradiction: For any contradiction F in ℒ, cr(F) = 0.
Entailment: For any propositions P and Q in ℒ, if P ⊨ Q then

cr(P) ⩽ cr(Q).
Equivalence: For any propositions P and Q in ℒ, if P ⫤⊨ Q then

cr(P) = cr(Q).
General Additivity: For any propositions P and Q in ℒ,

cr(P ∨ Q) = cr(P) + cr(Q) − cr(P & Q).
Finite Additivity (Extended): For any finite set ofmutually exclusive propo-

sitions {P1, P2, . . . , Pn},
cr(P1 ∨ P2 ∨ . . . ∨ Pn) = cr(P1) + cr(P2) + . . . + cr(Pn).

Decomposition: For any propositions P and Q in ℒ,
cr(P) = cr(P & Q) + cr(P & ∼Q).

Partition: For any finite partition of propositions in ℒ, the sum of their
unconditional cr-values is 1.

Together, Non-Negativity and Maximality establish the bounds of our cre-
dence scale. Rational credences will always fall between 0 and 1 (inclusive).
Given these bounds, Bayesians represent absolute certainty that a proposition
is true as a credence of 1 and absolute certainty that a proposition is false as
credence 0. The upper bound is arbitrary—we could have set it at whatever
positive real number we wanted. But using 0 and 1 lines up nicely with every-
day talk of being 0% confident or 100% confident in particular propositions,
and also with various considerations of frequency and chance discussed later
in this book.

Entailment is plausible for all the same reasons Comparative Entailment
was plausible in Chapter 1; we’ve simply moved from an expression in terms
of confidence comparisons to one using numerical credences. Understanding
equivalence as mutual entailment, Entailment entails Equivalence. General
Additivity is a generalization of Finite Additivity that allows us to calculate
an agent’s credence in any disjunction, whether the disjuncts are mutually
exclusive or not. (When the disjuncts aremutually exclusive, their conjunction
is a contradiction, the cr(P & Q) term equals 0, and General Additivity takes
us back to Finite Additivity.)
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2.2 the probability axioms 35

Finite Additivity (Extended) can be derived by repeatedly applying Finite
Additivity. Begin with any finite set of mutually exclusive propositions
{P1, P2, . . . , Pn}. By Finite Additivity,

cr(P1 ∨ P2) = cr(P1) + cr(P2) (2.5)

Logically, since P1 and P2 are each mutually exclusive with P3, P1 ∨ P2 is also
mutually exclusive with P3. So Finite Additivity yields

cr([P1 ∨ P2] ∨ P3) = cr(P1 ∨ P2) + cr(P3) (2.6)

Combining Equations (2.5) and (2.6) then gives us

cr(P1 ∨ P2 ∨ P3) = cr(P1) + cr(P2) + cr(P3) (2.7)

Next we would invoke the fact that P1 ∨ P2 ∨ P3 is mutually exclusive with P4
to derive

cr(P1 ∨ P2 ∨ P3 ∨ P4) = cr(P1) + cr(P2) + cr(P3) + cr(P4) (2.8)

Clearly this process iterates as many times as we need to reach

cr(P1 ∨ P2 ∨ . . . ∨ Pn) = cr(P1) + cr(P2) + . . . + cr(Pn) (2.9)

The idea here is that once you have Finite Additivity for proposition sets of
size two, you have it for proposition sets of any larger finite size as well. When
the propositions in a finite set are mutually exclusive, the probability of their
disjunction equals the sum of the probabilities of the disjuncts.

Combining Finite Additivity and Equivalence yields Decomposition. For
any P and Q, P is equivalent to the disjunction of the mutually exclusive
propositions P&Q and P&∼Q, so cr(P)must equal the sum of the cr-values of
those two. Partition then takes a finite set of mutually exclusive propositions
whose disjunction is a tautology. By Finite Additivity (Extended) the cr-values
of the propositions in the partition must sum to the cr-value of the tautology,
which by Normality must be 1.

2.2.2 A Bayesian approach to the Lottery scenario

In future sections I’ll explain some alternative ways of thinking about the
probability calculus. But first let’s use probabilities to do something: a Bayesian
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36 probability distributions

analysis of the situation in the Lottery Paradox. Recall the scenario from
Chapter 1: A fair lottery has one million tickets.9 An agent is skeptical of each
ticket that it will win, but takes it that some ticket will win. In Chapter 1 we
saw that it’s difficult to articulate plausible norms on binary belief that depict
this agent as believing rationally. But once we move to degrees of belief, the
analysis is straightforward.

We’ll use a language in which the constants a, b, c, . . . stand for the various
tickets in the lottery, and the predicate W says that a particular ticket wins.
A reasonable credence distribution over the resulting language sets

cr(Wa) = cr(Wb) = cr(Wc) = . . . = 1/1,000,000 (2.10)

Negation then gives us

cr(∼Wa) = cr(∼Wb) = cr(∼Wc) = . . . = 1 − 1/1,000,000 = 0.999999
(2.11)

reflecting the agent’s high confidence for each ticket that that ticket won’t win.
What about the disjunction saying that some ticket will win? Since

the Wa,Wb,Wc, . . . propositions are mutually exclusive, Finite Additivity
(Extended) yields

cr(Wa ∨Wb ∨Wc ∨Wd ∨ . . .) =
cr(Wa) + cr(Wb) + cr(Wc) + cr(Wd) + . . .

(2.12)

On the right-hand side of Equation (2.12) we have one million terms, each
of which has a value of 1/1,000,000. Thus the credence on the left-hand side
equals 1.

The Lottery Paradox is a problem for particular norms on binary belief.
We haven’t done anything to resolve that paradox here. Instead, we’ve shown
that the lottery situation giving rise to the paradox can be easily modeled by
Bayesian means. We’ve build a model of the lottery situation in which the
agent is both highly confident that some ticket will win and highly confident
of each ticket that it will not. (Constructing a similar model for the Preface is
left as an exercise for the reader.) There is no tension with the rules of rational
confidence represented in Kolmogorov’s axioms. The Bayesian model not only
accommodates but predicts that if a rational agent has a small confidence in
each of a set of mutually exclusive propositions, yet has a large enough number
of those propositions available, that agent will be certain (or close to certain)
that at least one of the propositions is true.
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2.2 the probability axioms 37

This analysis also reveals why it’s difficult to simultaneously maintain both
the Lockean thesis and the Belief Consistency norm from Chapter 1. The
Lockean thesis implies that a rational agent believes a proposition just in case
her credence in that proposition is above some numerical threshold. For any
such threshold we pick (less than 1), it’s possible to generate a lottery-type
scenario in which the agent’s credence that at least one ticket will win clears the
threshold, but her credence for any given ticket that that ticket will lose also
clears the threshold. Given the Lockean thesis, a rational agent will therefore
believe that at least one ticket will win but also believe of each ticket that it will
lose. This violates Belief Consistency, which says that every rational belief set
is logically consistent.

2.2.3 Doxastic possibilities

In the previous section we considered propositions of the form Wx, each of
which says of some particular ticket that it will win the lottery. To perform var-
ious calculations involving theseW propositions, we assumed that they form a
partition—that is, that they are mutually exclusive and jointly exhaustive. But
you may worry that this isn’t right: what about worlds in which ticket a and
ticket b both win the lottery due to a clerical error, or worlds in which no ticket
wins the lottery, or worlds in which the lottery never takes place, or worlds in
which humans never evolve? These worlds are logically possible—the laws of
logic alone don’t rule them out. Yet the credence distribution we crafted for
our agent assigns these worlds degree of belief 0. Could it ever be rational for
an agent to assign a logical possibility no credence whatsoever?

We will refer to the possible worlds an agent entertains as her doxastically
possible worlds.10 Perhaps a fully rational agent never rules out any logically
possible world; if so, then a rational agent’s set of doxastic possibilities is always
the full set of logical possibilities, and includes worlds like the one in which
every ticket wins, the one in which no ticket wins, the one in which no humans
exist, etc.Wewill discuss this positionwhenwe turn to theRegularity Principle
in Chapters 4 and 5. For the time being I want to note that even if a rational
agent should never entirely rule out a logically possible world, it might be
convenient in particular contexts for her to temporarily ignore certain worlds
as live possibilities. Pollsters calculating confidence intervals for their latest
sampling data don’t factor in the possibility that our sun will explode before
the next presidential election.
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How is the probability calculus affected when an agent restricts her
doxastically possible worlds to a proper subset of the logically possible worlds?
Section 2.1 defined various relations among propositions in terms of possible
worlds. In that context, the appropriate set of possible worlds to consider was
the full set of logically possible worlds. But we can reinterpret those definitions
as quantified over an agent’s doxastically possible worlds. In our analysis of
the Lottery scenario above, we effectively ignored possible worlds in which no
tickets win the lottery or in whichmore than one ticket wins. For our purposes
it was simpler to suppose that the agent rules them out of consideration. So
our Bayesian model treated each Wx proposition as mutually exclusive with
all the others, allowing us to apply Finite Additivity to generate equations like
(2.12). If we were working with the full space of logically possible worlds we
would have worlds in which more than oneWx proposition was true, so those
propositions wouldn’t count as mutally exclusive. But relative to the set of
possible worlds we’ve supposed the agent entertains, they are.

2.2.4 Probabilities are weird! The Conjunction Fallacy

As you work with credences it’s important to remember that probabilistic
relations can function very differently from the relations among categorical
concepts that inform many of our intuitions. In the Lottery situation it’s
perfectly rational for an agent to be highly confident of a disjunction while
having low confidence in each of its disjuncts. That may seem strange.

Tversky andKahneman (1983) offer another probabilistic example that runs
counter to most people’s intuitions. In a famous study, they presented subjects
with the following prompt:

Linda is 31 years old, single, outspoken, and very bright. She majored in phi-
losophy. As a student, she was deeply concernedwith issues of discrimination
and social justice, and also participated in anti-nuclear demonstrations.

The subjects were then asked to rank the probabilities of the following propo-
sitions (among others):

• Linda is active in the feminist movement.
• Linda is a bank teller.
• Linda is a bank teller and is active in the feminist movement.
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P

Q

s2 s3s1

s4

Figure 2.4 Areas equal to unconditional credences

The “great majority” of Tversky and Kahneman’s subjects ranked the con-
junction asmore probable than the bank teller proposition. But this violates the
probability axioms!A conjuctionwill always entail each of its conjuncts. By our
Entailment rule—which follows from the probability axioms—the conjunct
must be at least as probable as the conjunction. Being more confident in a
conjunction than its conjunct is known as the Conjunction Fallacy.

2.3 Alternative representations of probability

2.3.1 Probabilities in Venn diagrams

Earlier we used Venn diagrams to visualize propositions and the relations
among them. We can also use Venn diagrams to picture probability dis-
tributions. All we have to do is attach significance to something that was
unimportant before: the sizes of regions in the diagram. We stipulate that
the area of the entire rectangle is 1. The area of a region inside the rectangle
equals the agent’s unconditional credence in any proposition associated with
that region. (Note that this visualization technique works only for credence
distributions that satisfy the probability axioms.)11

For example, consider Figure 2.4. There we’ve depicted a probabilistic
credence distribution in which the agent is more confident of proposition P
than she is of proposition Q, as indicated by the P-circle’s being larger than
the Q-circle. What about cr(Q & P) versus cr(Q & ∼P)? On the diagram the
region labeled s3 has slightly more area than the region labeled s1, so the agent
is slightly more confident of Q & ∼P than Q & P. (When you construct your
ownVenn diagrams you need not include state-description labels like “s3”; I’ve
added them for reference.)
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P

Q

Figure 2.5 P ⊨ Q

Warning

It’s tempting to think that the size of a region in a Venn diagram represents
the number of possible worlds in that region—the number of worlds that
make the associated proposition true. But this would be a mistake. Just
because an agent ismore confident of one proposition than another does not
necessarily mean she associates more possible worlds with the former than
the latter. For example, if I tell you I have a weighted die that is more likely
to come up six than any other number, your increased confidence in six
does not necessarilymean that you think there are disproportionatelymany
worlds in which the die lands six. The area of a region in a Venn diagram
is a useful visual representation of an agent’s confidence in its associated
proposition. We should not read too much into it about the distribution of
possible worlds.12

Venn diagramsmake it easy to see why certain probabilistic relations hold. For
example, take the General Additivity rule from Section 2.2.1. In Figure 2.4, the
P ∨ Q region contains every point that is in the P-circle, in the Q-circle, or in
both. We could calculate the area of that region by adding up the area of the
P-circle and the area of theQ-circle, but in doing so we’d be counting the P&Q
region (labeled s1) twice. We adjust for this double-counting as follows:

cr(P ∨ Q) = cr(P) + cr(Q) − cr(P & Q) (2.13)

That’s General Additivity.
Figure 2.5 depicts a situation in which proposition P entails proposition Q.

As discussed earlier, this requires theP-circle to bewholly containedwithin the
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Q-circle. But since areas now represent unconditional credences, the diagram
makes it obvious that the cr-value of proposition Qmust be at least as great as
the cr-value of proposition P. That’s exactly what our Entailment rule requires.
(It also shows why the Conjunction Fallacy is a mistake—imagine Q is the
proposition that Linda is a bank teller and P is the proposition that Linda is a
feminist bank teller.)

Venn diagrams can be a useful way of visualizing probability relationships.
Bayesians often clarify a complex situation by sketching a quick Venn diagram
of the agent’s credence distribution. There are limits to this technique; when
our languages growbeyond three or so atomic propositions it becomes difficult
to get all the overlapping regions one needs and to make areas proportional to
credences. But there are also cases in which it’s much easier to understand why
a particular theorem holds by looking at a diagram than by working with the
axioms.

2.3.2 Probability tables

Besides being represented visually in a Venn diagram, a probability distribu-
tion can be represented precisely and efficiently in a probability table. To build
a probability table, we begin with a set of propositions forming a partition of
the agent’s doxastic possibilities. For example, suppose an agent is going to roll
a loaded six-sided die that comes up six on half of its rolls (with the remaining
rolls distributed equally among the other numbers). A natural partition of the
agent’s doxastic space uses the propositions that the die comes up one, the die
comes up two, the die comes up three, etc.The resulting probability table looks
like this:

proposition cr
Die comes up one. 1/10
Die comes up two. 1/10
Die comes up three. 1/10
Die comes up four. 1/10
Die comes up five. 1/10
Die comes up six. 1/2

The probability table first lists the propositions in the partition. Then for each
proposition it lists the agent’s unconditional credence in that proposition. If
the agent’s credences satisfy the probability axioms, the credence values in the
table will satisfy two important constraints:
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1. Each value is non-negative.
2. The values in the column sum to 1.

The first rule follows from Non-Negativity, while the second follows from our
Partition theorem.

Once we know the credences of partition members, we can calculate the
agent’s unconditional credence in any other proposition expressible in terms
of that partition. First, any contradiction receives credence 0. Then for any
other proposition, we figure out which rows of the table it’s true on, and
calculate its credence by summing the values on those rows. For example, we
might be interested in the agent’s credence that the die roll comes up even.
The proposition that the roll comes up even is true on the second, fourth,
and sixth rows of the table. So the agent’s credence in that proposition is
1/10 + 1/10 + 1/2 = 7/10.

We can calculate the agent’s credence in this way because

E ⫤⊨ 2 ∨ 4 ∨ 6 (2.14)

where E is the proposition that the die came up even, “2” represents its coming
up two, etc. By Equivalence,

cr(E) = cr(2 ∨ 4 ∨ 6) (2.15)

Since the propositions on the right are members of a partition, they are
mutually exclusive, so Finite Additivity (Extended) yields

cr(E) = cr(2) + cr(4) + cr(6) (2.16)

The agent’s unconditional credence in E can be found by summing the values
on the second, fourth, and sixth rows of the table.

Given a propositional language ℒ, it’s often useful to build a probability
table using the partition containing ℒ’s state-descriptions. For example, for a
language with two atomic propositions P andQ, I might give you the following
probability table:

P Q cr
s1 T T 0.1
s2 T F 0.3
s3 F T 0.2
s4 F F 0.4
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The state-descriptions in this table are fully specified by the Ts and Fs appearing
under P and Q in each row, but I’ve also provided labels (s1, s2, . . .) for each
state-description to show how they correspond to regions in Figure 2.4.

Suppose a probabilistic agent has the unconditional credences specified in
this table. What credence does she assign to P ∨ Q? From the Venn diagram
we can see that P ∨ Q is true on state-descriptions s1, s2, and s3. So we find
cr(P∨Q) by adding up the cr-values on the first three rows of our table. In this
case cr(P ∨ Q) = 0.6.

A probability table over state-descriptions is a particularly efficient way
of specifying an agent’s unconditional credence distribution over an entire
propositional language.13 A languageℒ closed under the standard connectives
contains infinitely many propositions, so a distribution over that language
contains infinitely many values. If the agent’s credences satisfy the probability
axioms, the Equivalence rule tells us that equivalent propositions must all
receive the same credence. So we can specify the entire distribution just by
specifying its values over a maximal set of non-equivalent propositions in the
language.

But that can still be a lot of propositions! If ℒ has n atomic propositions, it
will contain 22n non-equivalent propositions (see Exercise 2.3). For 2 atomics
that’s only 16 credence values to specify, but by the time we reach 4 atomics it’s
up to 65,536 distinct values.

On the other hand, a language with n atomics will contain only 2n state-
descriptions. And once we provide unconditional credences for these propo-
sitions in our probability table, all the remaining values in the distribution
follow. Every contradictory proposition receives credence 0, while each non-
contradictory proposition is equivalent to a disjunction of state-descriptions
(its disjunctive normal form). By Finite Additivity (Extended), the credence in
a disjunction of state-descriptions is just the sum of the credences assigned to
those state-descriptions. So the probability table contains all the information
we need to specify the full distribution.14

2.3.3 Using probability tables

Probability tables describe an entire credence distribution in an efficient
manner; instead of specifying a credence value for each non-equivalent propo-
sition in the language, we need only specify values for its state-descriptions.
Credences in state-descriptions can then be used to calculate credences in
other propositions.
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But probability tables can also be used to prove theorems and solve
problems. To do so, we replace the numerical credence values in the table
with variables:

P Q cr
s1 T T a
s2 T F b
s3 F T c
s4 F F d

This probability table for anℒwith two atomic propositionsmakes no assump-
tions about the agent’s specific credence values. It is therefore fully general,
and can be used to prove general theorems about probability distributions.
For example, on this table

cr(P) = a + b (2.17)

But a is just cr(P & Q), and b is cr(P & ∼Q). This gives us a very quick proof
of the Decomposition rule from Section 2.2.1. It’s often much easier to prove a
general probability result using a probability table built on state-descriptions
than it is to prove the same result from Kolmogorov’s axioms.

As for problem-solving, suppose I tell you that my credence distribution
satisfies the probability axioms and also has the following features: I am certain
of P∨Q, and I am equally confident inQ and∼Q. I then ask you to tell me my
credence in P ⊃ Q.

You might be able to solve this problem by drawing a careful Venn
diagram—perhaps you can even solve it in your head! If not, the probability
table provides a purely algebraic solution method. We start by expressing the
constraints on my distribution as equations using the variables from the table.
From our second constraint on probability tables we have:

a + b + c + d = 1 (2.18)

(Sometimes it also helps to invoke the first constraint, writing inequalities
specifying that a, b, c, and d are each greater than or equal to 0. In this particular
problem those inequalities aren’t needed.) Next we represent the fact that I am
equally confident in Q and ∼Q:

cr(Q) = cr(∼Q) (2.19)
a + c = b + d (2.20)
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2.3 alternative representations of probability 45

Finally, we represent the fact that I am certain of P ∨ Q. The only line of the
table on which P∨Q is false is line s4; if I’m certain of P∨Q, I must assign this
state-description a credence of 0. So

d = 0 (2.21)

Now what value are we looking for? I’ve asked you for my credence in P ⊃ Q;
that proposition is true on lines s1, s3, and s4; so you need to find a + c + d.
Applying a bit of algebra to Equations (2.18), (2.20), and (2.21), you should be
able to determine that a + c + d = 1/2.

2.3.4 Odds

Agents sometimes report their levels of confidence using odds rather than
probabilities. If an agent’s unconditional credence in P is cr(P), her odds for P
are cr(P) ∶ cr(∼P), and her odds against P are cr(∼P) ∶ cr(P).

For example, there are thirty-seven pockets on a European roulette wheel.
(Americanwheels havemore.) Eighteen of those pockets are black. Suppose an
agent’s credences obey the probability axioms, and she assigns equal credence
to the roulette ball’s landing in any of the thirty-seven pockets. Then her
credence that the ball will land in a black pocket is 18/37, and her credence
that it won’t is 19/37. Her odds for black are therefore

18/37 ∶ 19/37, or 18 ∶ 19 (2.22)

(Since the agent assigns equal credence to each of the pockets, these odds are
easily found by comparing the number of pockets that make the proposition
true to the number of pockets that make it false.) Yet in gambling contexts we
usually report odds against a proposition. So in a casino someone might say
that the odds against the ball’s landing in the single green pocket are “36 to 1”.
The odds against an event are tightly connected to the stakes at which it would
be fair to gamble on that event, which we will discuss in Chapter 7.

Warning

Instead of using a colon or the word “to”, people sometimes quote odds
as fractions. So someone might say that the odds for the roulette ball’s
landing in a black pocket are “18/19”.15 It’s important not to mistake this
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fraction for a probability value. If your odds for black are 18 ∶ 19, you take
the ball’s landing on black to a bit less likely to happen than not. But if
your unconditional credence in black were 18/19, you would always bet
on black!

It can be useful to think in terms of odds not only for calculating betting stakes
but also because odds highlight differences thatmay be obscured by probability
values. Suppose you hold a single ticket in a lottery that you take to be fair.
Initially you think that the lottery contains only two tickets, of which yours is
one. But then someone tells you there are 100 tickets in the lottery. This is a
significant blow to your chances, witnessed by the fact that your assessment
of the odds against winning has gone from 1∶1 to 99∶1. The significance of
this change can also be seen in your unconditional credence that you will lose,
which has jumped from 50% to 99%.

But now it turns out that your informant was misled, and there are actually
10,000 tickets in the lottery! This is another significant blow to your chances,
intuitively at least as bad as the first jump in size. And indeed, your odds against
winning go from 99∶1 to 9, 999∶1. Yet your credence that you’ll lose moves
only from 99% to 99.99%. Probabilities work on an additive scale; from that
perspective a move from 0.5 to 0.99 looks important while a move from 0.99
to 0.9999 looks like a rounding error. But odds use ratios, which highlight
multiplicative effects more obviously.

2.4 What the probability calculus adds

In Chapter 1 we moved from thinking of agents’ doxastic attitudes in terms
of binary (categorical) beliefs and confidence comparisons to working with
numerical degrees of belief. At a first pass, this is a purely descriptivemaneuver,
yielding descriptions of an agent’s attitudes at a higher fineness of grain. As we
saw in Chapter 1, this added level of descriptive detail confers both advantages
and disadvantages. On the one hand, credences allow us to say how much
more confident an agent is of one proposition than another. On the other
hand, assigning numerical credences over a set of propositions introduces a
complete ranking, making all the propositions commensurable with respect
to the agent’s confidences. This may be an unrealistic result.

Chapter 1 also offered a norm for comparative confidence rankings:
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Comparative Entailment: For any pair of propositions such that the first
entails the second, rationality requires an agent to be at least as
confident of the second as the first.

We have now introduced Kolmogorov’s probability axioms as a set of norms
on credences. Besides the descriptive changes that happen when we move
from comparative confidences to numerical credences, how do the probability
axioms go beyond Comparative Entailment? What more do we demand of an
agent when we require that her credences be probabilistic?

Comparative Entailment can be derived from the probability axioms—we’ve
already seen that by the Entailment rule, if P⊨Q then rationality requires
cr(P) ≤ cr(Q). But how much of the probability calculus can be recreated
simply by assuming that Comparative Entailment holds? We saw in Chapter
1 that if Comparative Entailment holds, a rational agent will assign equal,
maximal confidence to all tautologies and equal, minimal confidence to all
contradictions. This doesn’t assign specific numerical confidence values to
contradictions and tautologies, because Comparative Entailment doesn’t work
with numbers. But the probability axioms’ 0-to-1 scale for credence values is
fairly stipulative and arbitrary anyway. The real essence of Normality, Contra-
diction, Non-Negativity, and Maximality can be obtained from Comparative
Entailment.

That leaves one axiom unaccounted for. To me the key insight of
probabilism—and the element most responsible for Bayesianism’s distinctive
contributions to epistemology—is Finite Additivity. Finite Additivity places
demands on rational credence that don’t follow from any of the comparative
norms we’ve seen. To see how, consider the following two credence
distributions over a language with one atomic proposition:

Mr. Prob: cr(F) = 0 cr(P) = 1/6 cr(∼P) = 5/6 cr(T) = 1
Mr. Weak: cr(F) = 0 cr(P) = 1/36 cr(∼P) = 25/36 cr(T) = 1

With respect to their confidence comparisons, Mr. Prob and Mr. Weak are
identical; they each rank ∼P above P and both those propositions between
a tautology and a contradiction. Both agents satisfy Comparative Entailment.
Both agents also satisfy the Non-Negativity andNormality probability axioms.
But only Mr. Prob satisfies Finite Additivity. His credence in the tautologous
disjunction P ∨ ∼P is the sum of his credences in its mutually exclusive
disjuncts. Mr. Weak’s credences, on the other hand, are superadditive: he
assigns more credence to the disjunction than the sum of his credences in its
mutually exclusive disjuncts (1 > 1/36 + 25/36).
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Probabilismgoes beyondComparative Entailment by exaltingMr. Prob over
Mr. Weak. In endorsing Finite Additivity, the probabilist holds thatMr.Weak’s
credences have an irrational feature not present in Mr. Prob’s. When we apply
Bayesianism in later chapters, we’ll see that Finite Additivity gives rise to some
of the theory’s most interesting and useful results. It does so by demanding
that rational credences be linear, in the sense that a disjunction’s credence is a
linear combination16 of the credences in its mutually exclusive disjuncts.

Of course, the fan of confidence comparisons need not restrict herself to
the Comparative Entailment norm. Chapter 14 will explore further com-
parative constraints that have been proposed, some of which are capable of
discriminating between Mr. Prob and Mr. Weak. We will ask whether those
non-numerical norms can replicate all the desirable results secured by Finite
Additivity for the Bayesian credence regime.This will be an especially pressing
question because the impressive Bayesian numerical results come with a price.
Whenwe examine explicit philosophical arguments for the probability axioms
in Part IV of this book, we’ll find that while Normality andNon-Negativity can
be straightforwardly argued for, Finite Additivity is the most difficult part of
Bayesian epistemology to defend.

2.5 Exercises

Problem 2.1.
(a) List all eight state-descriptions available in a language with the three

atomic sentences P, Q, and R.
(b) Give the disjunctive normal form of (P ∨ Q) ⊃ R.

Problem 2.2. Here’s a fact: For any non-contradictory propositions X and Y,
X ⊨ Y if and only if every disjunct in the disjunctive normal form equivalent
of X is also a disjunct of the disjunctive normal form equivalent of Y.

(a) Use this fact to show that (P ∨ Q) & R ⊨ (P ∨ Q) ⊃ R.
(b) Explain why the fact is true. (Be sure to explain both the “if ”

direction and the “only if ” direction!)

Problem 2.3. Explain why a language ℒ with n atomic propositions
can express exactly 22n non-equivalent propositions. (Hint: Think about the
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number of state-descriptions available, and the number of distinct disjunctive
normal forms.)

Problem 2.4. Suppose your universe of discourse contains only two
objects, named by the constants “a” and “b”.

(a) Find a quantifier-free equivalent of the proposition (∀x)[Fx ⊃ (∃y)Gy].
(b) Find the disjunctive normal form of your quantifier-free proposition

from part (a).

Problem 2.5. Can a probabilistic credence distribution assign cr(P) =
0.5, cr(Q) = 0.5, and cr(∼P & ∼Q) = 0.8? Explain why or why not.17

Problem 2.6. Starting with only the probability axioms and Negation,
write out proofs for all of the probability rules listed in Section 2.2.1. Your
proofs must be straight from the axioms—no using Venn diagrams or proba-
bility tables! Once you prove a rule youmay use it in further proofs. (Hint: You
may want to prove them in an order different from the one in which they’re
listed. And I did Finite Additivity (Extended) for you.)

Problem 2.7. Prove that for any propositions P and Q, if cr(P ≡ Q) = 1
then cr(P) = cr(Q).

Problem 2.8. In The Empire Strikes Back, C-3PO tells Han Solo that the
odds against successfully navigating an asteroid field are 3,720 to 1.

(a) What is C-3PO’s unconditional credence that they will successfully
navigate the asteroid field? (Express your answer as a fraction.)

(b) Suppose C-3PO is certain that they will survive if they either success-
fully navigate the asteroid field, or fail to successfully navigate it but hide
in a cave. He is also certain that those are the only two ways they can
survive, and his odds against the conjunction of failing to successfully
navigate and hiding in a cave are 59 to 2. Assuming C-3PO’s credences
obey the probability axioms, what are his odds against their surviving?

(c) In the movie, how does Han respond to 3PO’s odds declaration?
(Apparently Han prefers his probabilities quoted as percentages.)

Problem 2.9. Consider the probabilistic credence distribution specified by
this probability table:
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P Q R cr
T T T 0.1
T T F 0.2
T F T 0
T F F 0.3
F T T 0.1
F T F 0.2
F F T 0
F F F 0.1

Calculate each of the following values on this distribution:
(a) cr(P ≡ Q)
(b) cr(R ⊃ Q)
(c) cr(P & R) − cr(∼P & R)
(d) cr(P & Q & R)/cr(R)

Problem 2.10. Can an agent have a probabilistic cr-distribution meeting
all of the following constraints?

1. The agent is certain of A ⊃ (B ≡ C).
2. The agent is equally confident of B and ∼B.
3. The agent is twice as confident of C as C & A.
4. cr(B & C & ∼A) = 1/5.

If not, prove that it’s impossible. If so, provide a probability table and demon-
strate that the resulting distribution satisfies each of the four constraints.
(Hint: Start by building a probability table; then figure out what each of the
constraints says about the credence values in the table; then figure out if it’s
possible to meet all of the constraints at once.)

Problem 2.11. Tversky and Kahneman’s finding that ordinary subjects
commit the Conjunction Fallacy has held up to a great deal of experimental
replication. Kolmogorov’s axioms make it clear that the propositions involved
cannot range from most probable to least probable in the way subjects con-
sistently rank them. Do you have any suggestions for why subjects might
consistently make this mistake? Is there any way to read what the subjects are
doing as rationally acceptable?

Problem 2.12. Recall Mr. Prob and Mr. Weak from Section 2.4. Mr. Weak
assigns lower credences to each contingent proposition than does Mr. Prob.
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2.6 further reading 51

While Mr. Weak’s distribution satisfies Non-Negativity and Normality, it
violates Finite Additivity by being superadditive: it contains a disjunction
whose credence is greater than the sum of the credences of its mutually
exclusive disjuncts.

Construct a credence distribution for “Mr. Bold” over language ℒ with
single atomic proposition P. Mr. Bold should rank every proposition in the
same order as Mr. Prob and Mr. Weak. Mr. Bold should also satisfy Non-
Negativity and Normality. But Mr. Bold’s distribution should be subadditive:
it should contain a disjunction whose credence is less than the sum of the
credences of its mutually exclusive disjuncts.

2.6 Further reading

Introductions and Overviews

Merrie Bergmann, JamesMoor, and Jack Nelson (2013).TheLogic Book. 6th
edition. New York: McGraw Hill

One of many available texts that thoroughly covers the logical material
assumed in this book.

Ian Hacking (2001). An Introduction to Probability and Inductive Logic.
Cambridge: Cambridge University Press

Brian Skyrms (2000).Choice and Chance: An Introduction to Inductive Logic.
4th edition. Stamford, CT: Wadsworth

Each of these books contains a Chapter 6 offering an entry-level, intuitive dis-
cussion of the probability rules—though neither explicitly uses Kolmogorov’s
axioms. Hacking has especially nice applications of probabilistic reasoning,
along with many counterintuitive examples like the Conjunction Fallacy from
our Section 2.2.4.

Classic Texts

A. N. Kolmogorov (1933/1950). Foundations of the Theory of Probability.
Translation edited by Nathan Morrison. New York: Chelsea Publishing
Company
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Text in which Kolmogorov laid out his famous axiomatization of probability
theory.

Extended Discussion

J. Robert G. Williams (2016). Probability and Non-Classical Logic. In:
Oxford Handbook of Probability and Philosophy. Ed. by Alan Hájek and
Christopher R. Hitchcock. Oxford: Oxford University Press

Covers probability distributions in non-classical logics, such as logics with
non-classical entailment rules and logics withmore than one truth-value. Also
briefly discusses probability distributions in logics with extra connectives and
operators, such as modal logics.

Branden Fitelson (2008). A Decision Procedure for Probability Calculus
with Applications. The Review of Symbolic Logic 1, pp. 111–125

Fills in the technical details of solving probability problems algebraically using
probability tables (which Fitelson calls “stochastic truth-tables”), including
the relevant meta-theory. Also describes a Mathematica package that will
solve probability problems and evaluate probabilistic conjectures for you,
downloadable for free at http://fitelson.org/PrSAT/.

Notes

1. Other authors describe degrees of belief as assigned to sentences, statements, or sets
of events. Also, propositions are sometimes taken to be identical to one of these alter-
natives. As mentioned in Chapter 1, I will not assume much about what propositions
are, except that: they are capable of having truth-values (that is, capable of being true
or false); they are expressible by declarative sentences; and they have enough internal
structure to contain logical operators. This last assumption could be lifted with a bit of
work.

2. Bayesians sometimes define degrees of belief over a sigma algebra. A sigma algebra
is a set of sets that is closed under (countable) union, (countable) intersection, and
complementation. Given a language ℒ, the sets of possible worlds associated with the
propositions in that language form a sigma algebra. The algebra is closed under union,
intersection, and complementation because the propositions in ℒ are closed under
disjunction, conjunction, and negation (respectively).

3. I’m also going to be fairly cavalier about corner-quotes, the use-mention distinction,
etc.
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4. Throughout this book we will be assuming a classical logic, in which each proposition
has exactly one of two available truth-values (true/false) and entailment obeys the
inference rules taught in standard introductory logic classes. For information about
probability in non-classical logics, see the Further Reading at the end of this chapter.

5. The cognoscenti will note that in order for the state-descriptions of ℒ to form a
partition, the atomic propositions ofℒmust be (logically) independent.Wewill assume
throughout this book that every propositional language employed contains logically
independent atomic propositions, unless explicitly noted otherwise.

6. Strictly, in order to get the result that the state-descriptions in a language form a
partition and the result that each non-contradictory proposition has a unique disjunc-
tive normal form, we need to further regiment our definitions. To our definition of
a state-description we add that the atomic propositions must appear in alphabetical
order. We then introduce a canonical ordering of the state-descriptions in a language
(say, the order in which they appear in a standardly ordered truth-table) and require
disjunctive normal form propositions to contain their disjuncts in canonical order with
no repetition.

7. In the statistics community, probability distributions are often assigned over the possi-
ble values of sets of random variables. Propositions are then thought of as dichotomous
random variables capable of taking only the values 1 and 0 (for “true” and “false”,
respectively). Only rarely in this book will we look past distributions over propositions
to distributions over more general random variables.

8. The axioms I’ve presented are not precisely identical to Kolmogorov’s, but the dif-
ferences are insignificant for our purposes. Some authors also include Countable
Additivity—which we’ll discuss in Chapter 5—among “Kolmogorov’s axioms”, but I’ll
use the phrase to pick out only Non-Negativity, Normality, and Finite Additivity.

Galavotti (2005, pp. 54–5) notes that authors such as Mazurkiewicz (1932) and
Popper (1938) also provided axioms for probability around the time Kolmogorov was
working. She recommends Roeper and Leblanc (1999) for an extensive survey of the
axiomatizations available.

9. This analysis could easily be generalized to any large, finite number of tickets.
10. Philosophers sometimes describe the worlds an agent entertains as her “epistemically

possible worlds”. Yet that term also carries a connotation of being determined by what
the agent knows. So I’ll discuss doxastically possible worlds, which are determined by
what an agent takes to be possible rather than what she knows.

11. A probability distribution over sets of possible worlds is an example of what math-
ematicians call a “measure”. The function that takes any region of a Euclidean two-
dimensional space and outputs its area is also a measure. That makes probabilities
representable by areas in a rectangle.

12. To avoid the confusion discussed here, some authors use “muddy” Venn diagrams
in which all atomic propositions are associated with regions of the same size, and
probability weights are indicated by piling up more or less “mud” on top of particular
regions. Muddy Venn diagrams are difficult to depict on two-dimensional paper, so I’ve
stuck with representing higher confidence as greater area.

13. Truth-tables famously come to us from Wittgenstein’s Tractatus Logico-Philosophicus
(Wittgenstein 1921/1961), in which Wittgenstein also proposed a theory of probability
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54 probability distributions

assigning equal value to each state-description. But to my knowledge the first person
to characterize probability distributions in general by the values they assign to state-
descriptions was Carnap, as in his (1945, Sect. 3).

14. We have argued from the assumption that an agent’s credences satisfy the probability
axioms to the conclusion that her unconditional credence in any non-contradictory
proposition is the sum of her credences in the disjuncts of its disjunctive normal form.
One can also argue in the other direction. Suppose I stipulate an agent’s credence
distribution over language ℒ as follows: (1) I stipulate unconditional credences for
ℒ’s state-descriptions that are non-negative and sum to 1; (2) I stipulate that for every
other non-contradictory proposition in ℒ, the agent’s credence in that proposition is
the sum of her credences in the disjuncts of that proposition’s disjunctive normal form;
and (3) I stipulate that the agent’s credence in each contradiction is 0. We can prove
that any credence distribution stipulated in this fashion will satisfy Kolmogorov’s three
probability axioms. I’ll leave the (somewhat challenging) proof as an exercise for the
reader.

15. Odds against a proposition, quoted with a slash like a fraction, are known as “British
odds”, for their popularity among British and Irish bookies.

16. Given two variables x and y and two constants a and b, we call z = ax + by a linear
combination of x and y. Finite Additivitymakes cr(X∨Y) a linear combination of cr(X)
and cr(Y), with the constants a and b each set to 1.

17. I owe this problem to Julia Staffel.
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