3

Conditional Credences

Chapter 2’s discussion was confined to unconditional credence, an agent’s
outright degree of confidence that a particular proposition is true. This chapter
takes up conditional credence, an agent’s credence that one proposition is true
on the supposition that another one is.

The main focus of this chapter is our fourth core normative Bayesian rule:
the Ratio Formula. This rational constraint on conditional credences has a
number of important consequences, including Bayes’s Theorem (which gives
Bayesianism its name).

Conditional credences are also central to the way Bayesians understand
evidential relevance. I will define relevance as positive correlation, then explain
how this notion has been used to investigate causal relations through the
concept of screening off.

Having achieved a deeper understanding of the mathematics of conditional
credences, I return at the end of the chapter to what exactly a conditional cre-
dence is. In particular, I discuss an argument by David Lewis that a conditional
credence can’t be understood as an unconditional credence in a conditional.

3.1 Conditional credences and the Ratio Formula

Arturo and Baxter know that two events will occur simultaneously in separate
rooms: a fair coin will be flipped, and a clairvoyant will predict how it will land.
Let H represent the proposition that the coin comes up heads, and C represent
the proposition that the clairvoyant predicts heads. Suppose Arturo and Baxter
each assign an unconditional credence of 1/2 to H and an unconditional
credence of 1/2 to C.

Although Arturo and Baxter assign the same unconditional credences as
each other to H and C, they still might take these propositions to be related in
different ways. We could tease out those differences by saying to each agent,
“I have no idea how the coin is going to come up or what the clairvoyant is
going to say. But suppose for a moment the clairvoyant predicts heads. On
this supposition, how confident are you that the coin will come up heads?” If
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56 CONDITIONAL CREDENCES

Arturo says 1/2 and Baxter says 99/100, that’s a good indication that Baxter
has more faith in the mystical than Arturo.

The quoted question in the previous paragraph elicits Arturo and Baxter’s
conditional credences, as opposed to the unconditional credences discussed in
Chapter 2. An unconditional credence is a degree of belief assigned to a single
proposition, indicating how confident the agent is that that proposition is true.
A conditional credence is a degree of belief assigned to an ordered pair of
propositions, indicating how confident the agent is that the first proposition is
true on the supposition that the second is. We symbolize conditional credences
as follows:

cr(H|C)=1/2 (3.1)

This equation says that a particular agent (in this case, Arturo) has a 1/2
credence that the coin comes up heads conditional on the supposition that the
clairvoyant predicts heads. The vertical bar indicates a conditional credence;
to the right of the bar is the proposition supposed; to the left of the bar is the
proposition evaluated in light of that supposition. The proposition to the right
of the bar is sometimes called the condition; I am not aware of any generally
accepted name for the proposition on the left.

To be clear: A real agent never assigns any credences ex nihilo, without
assuming at least some background information. An agents unconditional
credences in various propositions (such as H) are informed by her background
information at that time. To assign a conditional credence, the agent combines
her stock of background information with a further supposition that the
condition is true. She then evaluates the other proposition in light of this
combination.

A conditional credence is assigned to an ordered pair of propositions. It
makes a difference which proposition is supposed and which is evaluated.
Consider a case in which I'm going to roll a fair die and you have various cre-
dences involving the proposition E that it comes up even and the proposition
6 that it comes up six. Compare:

c(6|E) = 1/3 (3.2)
c(E|6) =1 (3.3)
3.1.1 The Ratio Formula

Section 2.2 described Kolmogorov’s probability axioms, which Bayesians
take to represent rational constraints on an agent’s unconditional credences.
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Figure 3.1 The region that dictates cr(P| Q)

Bayesians then add a constraint relating conditional to unconditional
credences:

Ratio Formula: For any P and Qin £, if cr(Q) > 0 then

(P& Q)
(Pl Q) = T
Stated this way, the Ratio Formula remains silent on the value of cr(P | Q) when
cr(Q) = 0. There are various positions on how one should assign conditional
credences when the condition has credence 0; we'll address some of them in
our discussion of the infinite in Section 5.4.

Why should an agent’s conditional credence equal the ratio of those uncon-
ditionals? Consider Figure 3.1. The rectangle represents all the possible worlds
the agent entertains. The agent’s unconditional credence in P is the fraction of
that rectangle taken up by the P-circle. (The area of the rectangle is stipulated
to be 1, so that fraction is the area of the P-circle divided by 1, which is just the
area of the P-circle.) When we ask the agent to assign a credence conditional
on the supposition that Q, she temporarily narrows her focus to just those
possibilities that make Q true. In other words, she excludes from her attention
the worlds I've shaded in the diagram, and considers only what’s in the
Q-circle. The agent’s credence in P conditional on Q is the fraction of the
Q-circle occupied by P-worlds. So its the area of the PQ overlap divided by
the area of the entire Q-circle, which is cr(P & Q)/cr(Q).

In the scenario in which I roll a fair die, your initial doxastic possibilities
include all six outcomes of the die roll. I then ask for your credence that the
die comes up six conditional on its coming up even—that is, cr(6 | E). To assign
this value, you exclude from consideration all the odd outcomes. You haven’t
actually learned that the die outcome is even; I've simply asked you to suppose
that it comes up even and assign a confidence to other propositions in light of
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58 CONDITIONAL CREDENCES

that supposition. You distribute your credence equally over the outcomes that
remain under consideration (2, 4, and 6), so your credence in six conditional
on even is 1/3.

We get the same result from the Ratio Formula:

ca(6&E) 1/6 1
cr(6|E) = W =12°3 (3.4)
The Ratio Formula allows us to calculate your conditional credences (confi-
dences under a supposition) from your unconditional credences (confidences
relative to no suppositions beyond your background information). Hopefully
it’s obvious why E gets an unconditional credence of 1/2 in this case; as for
6 & E, that’s equivalent to just 6, so it gets an unconditional credence of 1/6.!

Warning

Mathematicians often treat the Ratio Formula as a definition of conditional
probability. From their point of view, a conditional probability has the
value it does in virtue of two unconditional probabilities’ standing in a
certain ratio. But I do not want to reduce the possession of a conditional
credence to the possession of two unconditional credences standing in a
particular relation. I take a conditional credence to be a genuine mental
state (an attitude toward an ordered pair of propositions) capable of being
elicited in various ways, such as by asking an agent her confidence in a
proposition given a supposition. So I will interpret the Ratio Formula as
a rational constraint on how an agent’s conditional credences should relate
to her unconditional credences. As a normative constraint (rather than a
definition), it can be violated—by assigning a conditional credence that
doesn’t equal the specified ratio.

The point of the previous warning is that the Ratio Formula is a rational
constraint, and agents don’t always meet all the rational constraints on their
credences. Yet for agents who do satisfy the Ratio Formula, there can be no
difference between their conditional credences without some difference in
their unconditional credences as well. If we're both rational and I assign a
different cr(P| Q) value than you, we cannot assign the same values to both
cr(P & Q) and cr(Q). (A rational agent’s conditional credences supervene on
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3.1 CONDITIONAL CREDENCES AND THE RATIO FORMULA 59

her unconditional credences.) Fully specifying a rational agent’s unconditional
credence distribution suffices to specify her conditional credences as well.> For
instance, we might specify Arturo’s and Baxter’s credence distributions using
the following probability table:

C| H| cry crp

T | T | 1/4| 99/200
T| F|1/4] 1/200
F| T|1/4] 1/200
F | F | 1/4 | 99/200

Here cr, represents Arturos credences and crp represents Baxters. Arturos
unconditional credence in C is identical to Baxter's—the values on the first
two rows sum to 1/2 for each of them. Similarly, Arturo and Baxter have the
same unconditional credence in H (the sum of the first and third rows). Yet
Arturo and Baxter disagree in their confidence that the coin will come up heads
(H) given that the clairvoyant predicts heads (C). Using the Ratio Formula, we
calculate this conditional credence by dividing the value on the first row of the
table by the sum of the values on the first two rows. This yields:

cry(H|C) = L2 =

1., 99 99/200
12 2

# 700 = Too7200 ~ “BHIO (3:5)

Baxter has high confidence in the clairvoyant’s abilities. So on the supposition
that the clairvoyant predicts heads, Baxter is almost certain that the flip
comes up heads. Arturo, on the other hand, is skeptical, so supposing that
the clairvoyant predicts heads leaves his opinions about the flip outcome
unchanged.

3.1.2 Consequences of the Ratio Formula

Combining the Ratio Formula with the probability axioms yields further useful
probability rules. First we have the

Law of Total Probability: For any proposition P and finite partition
{Ql’ QZ’ sy Qn} ln L")

cr(P) = cr(P| Q) - cr(Qy) + cr(P| Q) - cr(Qy)+
.t c(P|Q,) - cr(Q,)
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Suppose you're trying to predict whether I will bike to work tomorrow, but
youre unsure if the weather will rain, hail, or be clear. The Law of Total
Probability allows you to systematically work through the possibilities in that
partition. You multiply your confidence that it will rain by your confidence that
I'll bike should it rain. Then you multiply your confidence that it'll hail by your
confidence in my biking given hail. Finally you multiply your unconditional
credence that it’ll be clear by your conditional credence that I'll bike given
that it’s clear. Adding these three products together yields your unconditional
credence that I'll bike. (In the formula, the proposition that I'll bike plays the
role of P and the three weather possibilities are Q;, Q,, and Qs.)

Next, the Ratio Formula connects conditional credences to Kolmogorov’s
axioms in a special way. Conditional credence is a two-place function, taking
in an ordered pair of propositions and yielding a real number. Now suppose we
designate some particular proposition R as our condition, and look at all of an
agent’s credences conditional on R. We now have a one-place function (because
the second place has been filled by R) that we can think of as a distribution
over the propositions in £. Remarkably, if the agent’s unconditional credences
satisfy the probability axioms, then the Ratio Formula requires this conditional
distribution cr(- | R) to satisfy those axioms as well. More formally, for any
proposition R in £ such that cr(R) > 0, the following will all be true:

« For any proposition Pin £, cr(P|R) > 0.

o For any tautology Tin £, cr(T| R) = 1.

o For any mutually exclusive propositions P and Q in £,
ct(PV Q|R) =cr(P|R) + cr(Q|R).

(You'll prove these three facts in Exercise 3.4.)

Knowing that a conditional credence distribution is a probability distribu-
tion can be a handy shortcut. (It also has a significance for updating credences
that we'll discuss in Chapter 4.) Because it’s a probability distribution, a
conditional credence distribution must satisfy all the consequences of the
probability axioms we saw in Section 2.2.1. For example, if I tell you that
cr(P|R) = 0.7, you can immediately tell that cr(~P | R) = 0.3, by the following
conditional implementation of the Negation rule:

cr(~P|R)=1—cr(P|R) (3.6)

Similarly, Entailment tells us that if P E Q, then cr(P|R) < cr(Q| R).
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One special conditional distribution is worth investigating at this point:
What happens when the condition R is a tautology? Imagine I ask you to
report your unconditional credences in a bunch of propositions. Then I ask
you to assign credences to those same propositions conditional on the further
supposition of . .. nothing. I give you nothing more to suppose. Clearly you’ll
just report back to me the same credences. Bayesians represent vacuous
information as a tautology, so this means that a rational agent’s credences
conditional on a tautology equal her unconditional credences. In other words,
for any Pin £,

cr(P|T) = cr(P) (3.7)

This fact (whose proof I'll leave to the reader) will be important to our theory

of updating later on.’

3.1.3 Bayes’s Theorem

The most famous consequence of the Ratio Formula and Kolmogorov’s
axioms is

Bayes’s Theorem: For any Hand Ein £,

cr(E|H) - cr(H)

c(H|E) = ()

The first thing to say about Bayess Theorem is that it is a theorem—it can
be proven straightforwardly from the axioms and Ratio Formula. This is
worth remembering, because there is a great deal of controversy about how
Bayesians apply the theorem. (The significance they attach to this theorem is
why Bayesians came to be called “Bayesians”.)

What philosophical significance could attach to an equation that is, in the
end, just a truth of mathematics? The theorem was first articulated by the Rev-
erend Thomas Bayes in the 1700s.? Prior to Bayes, much of probability theory
was concerned with problems of direct inference. Direct inference starts with
the supposition of some probabilistic hypothesis, then asks how likely that
hypothesis makes a particular experimental result. You probably learned to
solve many direct inference problems in school, such as “Suppose I flip a fair
coin 20 times; how likely am I to get exactly 19 heads?” Here the probabilistic
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62 CONDITIONAL CREDENCES

hypothesis H says that the coin is fair, while the experimental result E is that
20 flips yield exactly 19 heads. Your credence that the experimental result will
occur on the supposition that the hypothesis is true—cr(E | H)—is called the
likelihood.

Yet Bayes was also interested in inverse inference. Instead of making
suppositions about hypotheses and determining probabilities of courses of
evidence, his theorem allows us to calculate probabilities of hypotheses from
suppositions about evidence. Instead of calculating the likelihood cr(E | H),
Bayes’s Theorem shows us how to calculate cr(H | E). A problem of inverse
inference might ask, “Suppose a coin comes up heads on exactly 19 of 20 flips;
how probable is it that the coin is fair?”

Assessing the significance of Bayes’s Theorem, Hans Reichenbach wrote:

The method of indirect evidence, as this form of inquiry is called, consists
of inferences that on closer analysis can be shown to follow the structure
of the rule of Bayes. The physician’s inferences, leading from the observed
symptoms to the diagnosis of a specified disease, are of this type; so are
the inferences of the historian determining the historical events that must
be assumed for the explanation of recorded observations; and, likewise, the
inferences of the detective concluding criminal actions from inconspicuous
observable data. ... Similarly, the general inductive inference from observa-
tional data to the validity of a given scientific theory must be regarded as an
inference in terms of Bayes’ rule. ~(Reichenbach 1935/1949, pp. 94-5)°

Here’s an example of inverse inference: You're a biologist studying a particular
species of fish, and you want to know whether the genetic allele coding for
blue fins is dominant or recessive. Based on some other work you've done
on fish, you're leaning toward recessive—initially you assign a 0.4 credence
that the blue-fin allele is dominant. Given some background assumptions we
won’t worry about here,’” a direct inference from the theory of genetics tells
you that if the allele is dominant, roughly three out of four species members
will have blue fins; if the allele is recessive blue fins will appear on roughly
25% of the fish. But youre going to perform an inverse inference, making
experimental observations to decide between genetic hypotheses. You will
capture fish from the species at random and examine their fins. How significant
will your first observation be to your credences in dominant versus recessive?
When you contemplate various ways that observation might turn out, how
should supposing one outcome or the other affect your credences about the
allele? Before we do the calculation, try estimating how confident you should
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be that the allele is dominant on the supposition that the first fish you observe
has blue fins.

In this example our hypothesis H will be that the blue-fin allele is dominant.
The evidence E to be supposed is that a randomly drawn fish has blue fins.
We want to calculate the posterior value cr(H | E). This value is called the
“posterior” because it’s your credence in the hypothesis H after the evidence
E has been supposed. In order to calculate this posterior, Bayes's Theorem
requires the values of cr(E | H), cr(H), and cr(E).

cr(E | H) is the likelihood of drawing a blue-finned fish on the hypothesis
that the allele is dominant. On the supposition that the allele is dominant, 75%
of the fish have blue fins, so your cr(E | H) value should be 0.75. The other
two values are known as priors; they are your unconditional credences in the
hypothesis and the evidence before anything is supposed. We already said that
your prior in the blue-fin dominant hypothesis H is 0.4. So cr(H) is 0.4. But
what about the prior in the evidence? How confident are you before observing
any fish that the first one you draw will have blue fins?

Here we can apply the Law of Total Probability to the partition containing
H and ~H. This yields:

cr(E) = cr(E| H) - cr(H) + cr(E | ~H) - cr(~H) (3.8)

The values on the right-hand side are all either likelihoods, or priors related to
the hypothesis. These values we can easily calculate. So

cr(E) = 0.75 - 0.4 + 0.25 - 0.6 = 0.45 (3.9)

Plugging all these values into Bayes’s Theorem gives us

cr(E|H)-cr(H) 0.75-04
cr(E) T045 213 (3.10)

cr(H|E) =

Observing a single fish has the potential to change your credences substan-
tially. On the supposition that the fish you draw has blue fins, your credence
that the blue-fin allele is dominant goes from its prior value of 2/5 to a posterior
of 2/3.

Again, all of this is pure mathematics from a set of axioms that are rarely
disputed. So why has Bayes’s Theorem been the focus of controversy? One
issue is the role Bayesians give the theorem in updating attitudes over time;
we'll return to that application in Chapter 4. But the main idea Bayesians
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take from Bayes—the idea that has proven controversial—is that probabilistic
inverse inference is the key to induction. Bayesians think the primary way we
ought to draw conclusions from data—how we ought to reason about scientific
hypotheses, say, on the basis of experimental evidence—is by calculating
posterior credences using Bayes’s Theorem. This view stands in direct conflict
with other statistical methods, such as frequentism and likelihoodism. Advo-
cates of those methods also have deep concerns about where Bayesians get
the priors that Bayes’s Theorem requires. Once we've considerably deepened
our understanding of Bayesian epistemology, we will discuss those concerns
in Chapter 13, and assess frequentism and likelihoodism as alternatives to
Bayesianism.

Before moving on, I'd like to highlight two useful alternative forms of Bayes’s
Theorem. We've just seen that calculating the prior of the evidence—cr(E)—
can be easier if we break it up using the Law of Total Probability. Incorporating
that manuever into Bayes’s Theorem yields

cr(E| H) - cr(H)

THIE = BT - D + cr(E | ~H) - (<)

(3.11)

When a particular hypothesis H is under consideration, its negation ~H is
known as the catchall hypothesis. So this form of Bayes’s Theorem calculates
the posterior in the hypothesis from the priors and likelihoods of the hypoth-
esis and its catchall.

In other situations we have multiple hypotheses under consideration instead
of just one. Given a finite partition of n hypotheses {H,, H,, ..., H,}, the Law
of Total Probability transforms the denominator of Bayes’s Theorem to yield

cr(E| H;) - cr(H;)
cr(E|Hy)-cer(Hy) + cr(E|Hy) - cx(Hy) + ... + cr(E| H,) - cr(H,,)
(3.12)

cr(H; | E)=

This version allows you to calculate the posterior of one particular hypothesis
H; in the partition from the priors and likelihoods of all the hypotheses.

3.2 Relevance and independence
Arturo doesn’t believe in hocus pocus; from his point of view, information

about what a clairvoyant predicts is irrelevant to determining how a coin
flip will come out. So supposing that a clairvoyant predicts heads makes no
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difference to Arturos confidence in a heads outcome. If C says the clairvoyant
predicts heads, H says the coin lands heads, and cr, is Arturos credence
distribution, we have

cr,(H|C) = 1/2 = cry(H) (3.13)

Generalizing this idea yields a key definition: Proposition P is probabilisti-
cally independent of proposition Q relative to distribution cr just in case

cr(P| Q) = cr(P) (3.14)

In this case Bayesians also say that Q is irrelevant to P. When Q is irrelevant
to P, supposing Q leaves an agent’s credence in P unchanged.®

Notice that probabilistic independence is always relative to a distribution
cr. The very same propositions P and Q might be independent relative to one
distribution but dependent relative to another. (Relative to Arturo’s credences
the clairvoyant’s prediction is irrelevant to the flip outcome, but relative to
the credences of his friend Baxter—who believes in psychic powers—it is
not.) In what follows I may omit reference to a particular distribution when
context makes it clear, but you should keep the relativity of independence to a
probability distribution in the back of your mind.

While Equation (3.14) will be our official definition of probabilistic indepen-
dence, there are many equivalent tests for independence. Given the probability
axioms and Ratio Formula, the following equations are all true just when
Equation (3.14) is:

cr(P) = cr(P| ~Q) (3.15)

ct(P| Q) = cr(P| ~Q) (3.16)
cr(Q|P) = cr(Q) = cr(Q|~P) (3.17)
cr(P& Q) = cr(P) - cr(Q) (3.18)

The equivalence of Equations (3.14) and (3.15) tells us that Q is probabilisti-
cally independent of P just in case ~Q is. The equivalence of (3.14) and (3.17)
shows us that independence is symmetric: if supposing Q makes no difference
to an agent’s credence in P, then supposing P won't change that agent’s attitude
toward Q. Finally, Equation (3.18) embodies a useful probability rule:

Multiplication: Pand Q are probabilistically independent relative to cr ifand
only if cr(P & Q) = cr(P) - cr(Q).
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(Some authors define probabilistic independence using this biconditional, but
we will define independence using Equation (3.14), then treat Multiplication
as a consequence.)

We can calculate the probability of a conjunction by multiplying the prob-
abilities of its conjuncts only when those conjuncts are independent. This
trick will not work for any arbitrary propositions. The general formula for
probability in a conjunction can be derived quickly from the Ratio Formula:

ca(P& Q) =cr(P|Q) - cr(Q) (3.19)

When P and Q are probabilistically independent, the first term on the right-
hand side equals cr(P).

It's important not to get Multiplication and Finite Additivity confused. Finite
Additivity says that the credence of a disjunction is the sum of the credences
of its mutually exclusive disjuncts. Multiplication says that the credence of a
conjunction is the product of the credences of its independent conjuncts. If I flip
a fair coin twice in succession, heads on the first flip and heads on the second
flip are independent, while heads on the first flip and tails on the first flip are
mutually exclusive.

When two propositions fail to be probabilistically independent (relative to a
particular distribution), we say those propositions are relevant to each other.
Replace the “=" signs in Equations (3.14) through (3.18) with “>” signs and
you have tests for Qs being positively relevant to P. Once more the tests are
equivalent—if any of the resulting inequalities is true, all of them are. Q is
positively relevant to P when assuming Q makes you more confident in P.
For example, since Baxter believes in mysticism, he takes the clairvoyant’s
predictions to be highly relevant to the outcome of the coin flip—supposing
that the clairvoyant has predicted heads takes him from equanimity to near-
certainty in a heads outcome. Baxter assigns

crg(H| C) = 99/100 > 1/2 = crz(H) (3.20)

Like independence, positive relevance is symmetric. Supposing that the coin
came up heads will make Baxter highly confident that the clairvoyant predicted
it would.

Similarly, replacing the “=” signs with “<” signs above yields tests for
negative relevance. For Baxter, the clairvoyant’s predicting heads is negatively
relevant to the coin’s coming up tails. Like positive correlation, negative

correlation is symmetric (supposing a tails outcome makes Baxter less
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confident in a heads prediction). Note also that there are many synonyms
in the statistics community for “relevance”. Instead of finding “positively/
negatively relevant” terminology, you'll sometimes find “positively/negatively
dependent”, “positively/negatively correlated”>, or even “correlated/
anti-correlated”.

The strongest forms of positive and negative relevance are entailment and
refutation. Suppose a hypothesis H has nonextreme prior credence. If a par-
ticular piece of evidence E entails the hypothesis, the probability axioms and
Ratio Formula tell us that

cr(H|E) =1 (3.21)

Supposing E takes H from a middling credence to the highest credence
allowed. Similarly, if E refutes H (what philosophers of science call falsifica-
tion), then

cr(H|E)=0 (3.22)

Relevance will be most important to us because of its connection to confirma-

tion, the Bayesian notion of evidential support. A piece of evidence confirms
a hypothesis only if it’s relevant to that hypothesis. Put another way, learning
a piece of evidence changes a rational agent’s credence in a hypothesis only if
that evidence is relevant to the hypothesis. (Much more on this later.)

3.2.1 Conditional independence and screening off

The definition of probabilistic independence compares an agent’s conditional
credence in a proposition to her unconditional credence in that proposition.
But we can also compare conditional credences. When Baxter, who believes
in the occult, hears a clairvoyant’s prediction about the outcome of a fair coin
flip, he takes it to be highly correlated with the true flip outcome. But what if
we ask Baxter to suppose that this particular clairvoyant is an impostor? Once
he supposes the clairvoyant is an impostor, Baxter may take the clairvoyant’s
predictions to be completely irrelevant to the flip outcome. Let C be the
proposition that the clairvoyant predicts heads, H be the proposition that
the coin comes up heads, and I be the proposition that the clairvoyant is an
impostor. It’s possible for Baxter’s credences to satisfy both of the following
equations at once:
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cr(H| C) > cr(H) (3.23)
ca(H|C&ID) =cr(H|D (3.24)

Inequality (3.23) tells us that unconditionally, Baxter takes C to be relevant
to H. But conditional on the supposition of I, C becomes independent of H
(Equation (3.24)); once Baxter has supposed I, adding C to his suppositions
doesn't affect his confidence in H.

Generalizing this idea yields the following definition of conditional inde-
pendence: P is probabilistically independent of Q conditional on R just in case

cr(P|Q&R) = cr(P|R) (3.25)

If this equality fails to hold, we say that Q is relevant to P conditional on R.

One more piece of terminology: We will say that R screens off P from Q
when Q is unconditionally relevant to P, but irrelevant to P conditional on
each of R and ~R. That is, R screens off P from Q just in case all three of the
following are satisfied:

cr(P| Q) # cr(P) (3.26)
cr(P|Q&R) = cr(P|R) (3.27)
cr(P| Q& ~R) = cr(P|~R) (3.28)

When these equations are met, P and Q are correlated but supposing either R
or ~R makes that correlation disappear.’

Conditional independence and screening oft are both best understood
through real-world examples. We'll see a number of those in the next few
sections.

3.2.2 The Gambler’s Fallacy

People often act as if future chancy events will “compensate” for unexpected
past results. When a good hitter strikes out many times in a row, someone will
say he’s “due” for a hit. If a fair coin comes up heads nineteen times in a row,
many people become more confident that the next outcome will be tails.

This mistake is known as the Gambler’s Fallacy.!® A person who makes the
mistake is thinking along something like the following lines: In twenty flips of
a fair coin, it's more probable to get nineteen heads and one tail than it is to
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get twenty heads. So having seen nineteen heads, it's much more likely that the
twentieth flip will come up tails.

This person is providing the right answer to the wrong question. If the
question is “When a fair coin is flipped twenty times, is it more likely that
youw'll get a fotal of nineteen heads and one tail than it is that you'll get twenty
heads?”, the answer to that question is “yes”—in fact, it’s twenty times as likely!
But that’s the wrong question to ask in this case. Instead of wondering what
sorts of total outcomes are probable when one flips a fair coin twenty times,
in this case it's more appropriate to ask: given that the coin has already come
up heads nineteen times, how confident are we that the twentieth flip will be
tails? This is a question about our conditional credence

cr(20th flip tails | first 19 flips heads) (3.29)

How should we calculate this conditional credence? Ironically, it might be
more reasonable to make a mistake in the opposite direction from the Gam-
bler’s Fallacy. If I see a coin come up heads nineteen times, shouldn’t that make
me suspect that it’s biased toward heads? If anything, shouldn’t supposing
nineteen consecutive heads make me less confident that the twentieth flip will
come up tails?

This line of reasoning would be appropriate to the present case if we hadn’t
stipulated that the coin is fair. For a rational agent, the outcome of the twentieth
flip is probabilistically independent of the outcomes of the first nineteen flips
conditional on the fact that the coin is fair. That is,

cr(20th flip tails | first 19 flips heads & fair coin) =

(3.30)
cr(20th flip tails | fair coin)

We can justify this equation as follows: Typically, information that a coin
came up heads nineteen times in a row would alter your opinion about whether
it’s a fair coin. Changing your opinion about whether it’s a fair coin would then
affect your prediction for the twentieth flip. So typically, information about
the first nineteen flips alters your credences about the twentieth flip by way of
your opinion about whether the coin is fair. But if you've already established
that the coin is fair, information about the first nineteen flips has no further
significance for your prediction about the twentieth. So conditional on the
coin’s being fair, the first nineteen flips’ outcomes are irrelevant to the outcome
of the twentieth flip.
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The left-hand side of Equation (3.30) captures the correct question to ask
about the Gambler’s Fallacy case. The right-hand side is easy to calculate; it’s
1/2. So after seeing a coin known to be fair come up heads nineteen times, we
should be 1/2 confident that the twentieth flip will be tails.!!

3.2.3 Probabilities are weird! Simpson’s Paradox

Perhaps youre too much of a probabilistic sophisticate to ever commit the
Gambler’s Fallacy. Perhaps you successfully navigated Tversky and Kahne-
man’s Conjunction Fallacy (Section 2.2.4) as well. But even probability experts
sometimes have trouble with the counterintuitive relations that arise between
conditional and unconditional dependence.

Here’s an example of how odd things can get: In a famous case, the University
of California, Berkeley’s graduate departments were investigated for gender
bias in admissions. The concern arose because in 1973 about 44% of overall
male applicants were admitted to graduate school at Berkeley, while only
35% of female applicants were. Yet when the graduate departments (where
admissions decisions are made) were studied one at a time, it turned out that
individual departments either were admitting men and women at roughly
equal rates, or in some cases were admitting a higher percentage of female
applicants.

This is an example of Simpson’s Paradox, in which probabilistic depen-
dencies point in one direction conditional on each member of a partition, yet
point the opposite way unconditionally. A Simpson’s Paradox case involves
a collection with a number of subgroups. Each of the subgroups displays the
same correlation between two traits. Yet when we examine the collection as a
whole, that correlation is reversed!'?

To see how this can happen, consider another example: Over the course of
the 2016-2017 NBA season, Houston Rockets player James Harden made a
higher percentage of his two-point shots than Toronto Raptors player DeMar
DeRozan did. Harden also made a higher percentage of his three-point shots
than DeRozan. Yet when we look at all the shots attempted (both two- and
three-pointers), DeRozan made a higher percentage than Harden overall.!?
Here are the data for the two players:

Two-pointers Three-pointers | Combined
DeRozan | 688/1421 48.4% | 33/124  26.6% | 721/1545 46.7%
Harden 412/777 53.0% | 262/756 34.7% | 674/1533 44.0%
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The second number in each box is the number of attempts; the first is the
number of makes; the third is the percentage (makes divided by attempts).
Looking at the table, you can see how Harden managed to shoot better than
DeRozan from each distance yet have a worse shooting percentage overall.
Since three-pointers are more difficult to make than two-pointers, each player
made a much higher percentage of his two-point attempts than his three-
point attempts. DeRozan shot over 90% of his shots from the easier-to-
make two-point distance. Harden, on the other hand, shot almost half of his
shots from downtown. Harden was taking many more low-percentage shots
than DeRozan, so even though Harden was better at those shots, his overall
percentage suffered.

Scrutiny revealed a similar effect in Berkeley’s 1973 admissions data. Bickel,
Hammel, and O’Connell (1975) concluded, “The proportion of women appli-
cants tends to be high in departments that are hard to get into and low in those
that are easy to get into.” Although individual departments were admitting
women at comparable rates to men, female applications were less successful
overall because more were directed at departments with low admission rates.*

Simpson’s Paradox can be thought of entirely in terms of numerical pro-
portions, as we've just done with the basketball and admissions examples. But
these examples can also be analyzed using conditional probabilities. Suppose,
for instance, that you are going to select a Harden or DeRozan shot attempt
at random from the 2016-2017 season, making your selection so that each of
the 3,078 attempts they put up together is equally likely to be selected. How
confident should you be that the selected attempt will be a make? How should
that confidence change on the supposition that a DeRozan attempt is selected,
or a two-point attempt?

Below is a probability table for your credences, assembled from the real-
life statistics above. Here D says that it’s a DeRozan attempt; 2 says it’s a two-
pointer; and M says it’s a make. (Given the pool from which we're sampling,
~D means a Harden attempt and ~2 means it’s a three-pointer.)

S
<

cr

688/3078
733/3078

33/3078

91/3078
412/3078
365/3078
262/3078
494/3078

M| M| M= ||
e e e B e e n B e N B WS
M| ||| T| | 7|
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A bit of calculation with this probability table reveals the following:

ct(M|D) > cx(M| ~D) (3.31)
ca(M|D&2) < cr(M|~D&?2) (3.32)
cr(M|D & ~2) < cr(M | ~D & ~2) (3.33)

If you're selecting an attempt from the total sample, DeRozan is more likely
to make it than Harden. Put another way, DeRozan’s taking the attempt is
unconditionally positively relevant to its being made (Equation (3.31)). But
DeRozan’s shooting is negatively relevant to a make conditional on each of
the two distances (Equations (3.32) and (3.33)). If you're selecting from only
the two-pointers, or from only the three-pointers, the shot is more likely to be
made if it’s attempted by Harden.

3.2.4 Correlation and causation

You may have heard the expression “correlation is not causation.” People
typically use this expression to point out that just because two events have
both occurred—and maybe occurred in close spatio-temporal proximity—
that doesn’t mean they had anything to do with each other. But “correlation”
is a technical term in probability discussions. The propositions describing two
events may both be true, or you might have high credence in both of them,
yet they still might not be probabilistically correlated. For the propositions
to be correlated, supposing one to be true must change the probability of the
other. I'm confident that I'm under 6 feet tall and that my eyes are blue, but
that doesn’t mean I take those facts to be correlated.

Once we've understood probabilistic correlation correctly, does its presence
always indicate a causal connection? When two propositions about empir-
ical events are correlated, must the event described by one cause the event
described by the other? Hans Reichenbach offered a classic counterexample
to this proposal. He wrote:

Suppose two geysers which are not far apart spout irregularly, but throw
up their columns of water always at the same time. The existence of a
subterranean connection of the two geysers with a common reservoir of hot
water is then practically certain. (1956, p. 158)
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addictive personality (P)

smoker (S) drinker (D)

Figure 3.2 A causal fork

If you've noticed that two nearby geysers always spout simultaneously, seeing
one spout will increase your confidence that the other is spouting as well.
So your credences about the geysers are correlated. But you don’t think
one geyser’s spouting causes the other to spout. Instead, you hypothesize an
unobserved reservoir of hot water that is the common cause of both spouts.

Reichenbach proposed a famous principle about empirically correlated
events:

Principle of the Common Cause: When event outcomes are probabilisti-
cally correlated, either one causes the other or they have a common
15
cause.

In addition to this principle, he offered a key mathematical insight about
causation: a common cause screens its effects off from each other.

Let’s work through an example of this insight concerning causation and
screening off. Suppose the proposition that a particular individual is a drinker
is positively relevant to the proposition that she’s a smoker. According to the
Principle of the Common Cause, there must be some causal link between these
propositions. Perhaps drinking causes smoking—drinking creates situations
in which one is more likely to smoke—or vice versa. Or they may be linked
through a common cause: maybe being a smoker and being a drinker are both
promoted by an addictive personality, which we can imagine results from a
genetic endowment unaffected by one’s behavior. (See Figure 3.2; the arrows
indicate causal influence.)

Imagine the latter explanation is true, and moreover is the only true expla-
nation of the correlation between drinking and smoking. That is, being a
smoker and being a drinker are positively correlated only due to their both
being caused by an addictive personality. Given this assumption, let’s take a
particular subject whose personality youre unsure about, and consider what
happens to your credences when you make various suppositions about her.

If you begin by supposing that the subject drinks, this will make you more
confident that she smokes—but only because it makes you more confident
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parents’ genes (G)

addictive personality (P)

|

smoker (S)

Figure 3.3 A causal chain

that the subject has an addictive personality. On the other hand, you might
start by supposing that the subject has an addictive personality. That will
certainly make you more confident that she’s a smoker. But once you've made
that adjustment, going on to suppose that she’s a drinker won't affect your
confidence in smoking. Information about drinking affects your smoking
opinions only by way of helping you figure out whether she has an addictive
personality, and the answer to the personality question was filled in by your
initial supposition. Once an addictive personality is supposed, drinking has
no further relevance to smoking. (Compare: Once a coin is supposed to be
fair, the outcomes of its first nineteen flips have no relevance to the outcome
of the twentieth.) Drinking becomes probabilistically independent of smok-
ing conditional on suppositions about whether the subject has an addictive
personality. That is,

cr(S| D) > cr(S) (3.34)
cr(S| D & P) = cr(S| P) (3.35)
cr(S| D & ~P) = cr(S| ~P) (3.36)

Causal forks (as in Figure 3.2) give rise to screening off. P is a common cause
of Sand D, so P screens oft S from D.

But that’s not the only way screening off can occur. Consider Figure 3.3.
Here we've focused on a different portion of the causal structure. Imagine that
the subject’s parents’ genes causally influence whether she has an addictive per-
sonality, which in turn causally promotes smoking. Now her parents’ genetics
are probabilistically relevant to the subject’s smoking, but that correlation is
screened off by facts about her personality. Again, if youre uncertain whether
the subject’s personality is addictive, facts about her parents’ genes will affect
your opinion of whether she’s a smoker. But once you've made a firm suppo-
sition about the subject’s personality, suppositions about her parents’ genetics
have no further influence on your smoking opinions. In equation form:
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cr(S| G) > cr(S) (3.37)
cr(S|G&P) =cr(S|P) (3.38)
cr(S| G & ~P) = cr(S|~P) (3.39)

P screens off S from G.16

Relevance, conditional relevance, and causation can interact in very com-
plex ways.!” My goal here has been to introduce the main ideas and termi-
nology employed in their analysis. The state of the art in this field has come
a long way since Reichenbach; computational tools now available can look at
statistical correlations among a large number of variables and hypothesize a
causal structure lying beneath them. The resulting causal diagrams are known
as Bayes Nets, and have practical applications from satellites to health care to
car insurance to college admissions.

These causal methods all start from Reichenbach’s insight that common
causes screen off their effects. And what of his more metaphysically radical
Principle of the Common Cause? It remains highly controversial.

3.3 Conditional credences and conditionals

I now want to circle back and get clearer on the nature of conditional cre-
dence. First, it's important to note that the conditional credences we've been
discussing are indicative, not subjunctive. This distinction is familiar from the
theory of conditional propositions. Compare:

If Shakespeare didn’t write Hamlet, then someone else did.
If Shakespeare hadn’t written Hamlet, then someone else would have.

The former conditional is indicative, while the latter is subjunctive. The
traditional distinction between these two types of conditional begins with
the assumption that a conditional is evaluated by considering possible worlds
in which the antecedent is satisfied, then checking whether the consequent
is true in those worlds as well. In evaluating an indicative conditional, the
antecedent worlds are restricted to those among the agent’s doxastic possi-
bilities.!® Evaluating a subjunctive conditional, on the other hand, permits
counterfactual reasoning involving antecedent worlds considered non-actual.
So when you assess the subjunctive conditional above, you are allowed to
consider worlds that make the antecedent true by making Hamlet never exist.
But when evaluating the indicative conditional, you have to take into account
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that Hamlet actually does exist, and entertain only worlds in which that’s true.
So you consider bizarre “author-conspiracy” worlds that, while far-fetched,
satisfy the antecedent and are among your current doxastic possibilities. In
the end, I'm guessing you take the indicative conditional to be true but the
subjunctive to be false.

Now suppose I ask for your credence in the proposition that someone wrote
Hamlet, conditional on the supposition that Shakespeare didn’t. This value will
be high, again because you take Hamlet to exist. In assigning this conditional
credence, you aren’t bringing into consideration possible worlds youd other-
wise ruled out (such as Hamlet-free worlds). Instead, you're focusing in on the
narrow set of author-conspiracy worlds you currently entertain. As we saw in
Figure 3.1, assigning a conditional credence strictly narrows the worlds under
consideration; it’s doesn't expand your attention to worlds previously ruled
out. Thus the conditional credences discussed in this book—and typically
discussed in the Bayesian literature—are indicative rather than subjunctive.'’

Are there more features of conditional propositions that can help us under-
stand conditional credences? Might we understand conditional credences in
terms of conditionals? Initiating his study of conditional degrees of belief, EP.
Ramsey warned against assimilating them to conditional propositions:

We are also able to define a very useful new idea—“the degree of belief in p
given q". This does not mean the degree of belief in “If p then g, or that in
“p entails q”, or that which the subject would have in p if he knew q, or that
which he ought to have. (1931, p. 82)%°

Yet many authors failed to heed Ramsey’s warning. It's very tempting to
equate conditional credences with some simple combination of conditional
propositions and unconditional credences. For example, when I ask, “How
confident are you in P given Q?”, it’s easy to hear that as “Given Q, how
confident are you in P?” or just “If Q is true, how confident are you in P?”
This simple slide might suggest that for any real number r and propositions
Pand Q,

“cr(P| Q) = r” is equivalent to “Q — cr(P) =1~ (3.40)

Here I'm using the symbol “—” to represent some kind of conditional. For the
reasons discussed above, it should be an indicative conditional. But it need
not be the material conditional symbolized by “>”; many authors think the
material conditional’s truth-function fails to accurately represent the meaning
of natural-language indicative conditionals.
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Endorsing the equivalence in (3.40) would require serious changes to the
traditional logic of conditionals. We can demonstrate this in two ways. First,
we usually take indicative conditionals to satisty the disjunctive syllogism rule.
(The material conditional certainly does!) This rule tells us that

“X = Z”and “Y — Z” jointly entail “X VvV Y) —» 2”7 (3.41)

for any propositions X, Y, and Z. Thus for any propositions A, B, and C and
constant k we have

“A = [cr(C) = k]” and “B — [cr(C) = k]” entail “(A VvV B) — [cr(C) = k]”
(3.42)

Combining (3.40) and (3.42) yields
“cr(C|A) = k” and “cr(C| B) = k” entail “cr(C|AV B) = k7 (3.43)

(3.43) may look appealing, as a sort of probabilistic analog of disjunctive
syllogism. But it’s false. Not only can one design a credence distribution
satisfying the probability axioms and Ratio Formula such that cr(C|A) = k
and cr(C|B) = kbut cr(C|A VvV B) # k; one can even describe real-life
examples in which it's rational for an agent to assign such a distribution.
(See Exercise 3.14.) The failure of (3.43) is another case in which credences
confound expectations developed by our experiences with classificatory states.
Second, we usually take indicative conditionals to satisfy modus tollens. But
consider the following facts about me: Unconditionally, I am highly confident
that I will be alive tomorrow. But conditional on the proposition that the sun
just exploded, my confidence that I will be alive tomorrow is very low. Given
these facts, modus tollens, and (3.40), I could run the following argument:

cr(alive tomorrow | sun exploded) is low. [given] (3.44)
If the sun exploded, cr(alive tomorrow) is low.  [(3.44), (3.40)]  (3.45)
cr(alive tomorrow) is high. [given] (3.46)
The sun did not explode. [modus tollens]  (3.47)

While intriguing for its promise of astronomy by introspection, this argument
is unsound. SoI conclude that as long as indicative conditionals satisfy classical
logical rules such as disjunctive syllogism and modus tollens, any analysis of
conditional credences in terms of conditionals that uses (3.40) must be false.?!
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Perhaps we've mangled the transition from conditional credences to
conditional propositions. Perhaps we should hear “How confident are you
in P given Q?” as “How confident are you in ‘P, given Q’?”, which is in turn
“How confident are you in ‘If Q, then P’?” Maybe a conditional credence
is a credence in a conditional. Or perhaps more weakly: an agent assigns a
particular conditional credence value whenever she unconditionally assigns
that value to a conditional. In symbols, the proposal is that

“cr(P| Q) = r” is equivalent to “cr(Q - P) =17 (3.48)

for any real r, any propositions P and Q, any credence distribution cr, and
some indicative conditional —. If true, this equivalence would offer another
possibility for analyzing conditional credences in terms of unconditional
credences and conditionals.

We can quickly show that (3.48) fails if “—” is read as the material condi-
tional D. Under the material reading, the proposal entails that

c(P|Q)=cr(QD P) (3.49)

Using the probability calculus and Ratio Formula, we can show that Equation
(3.49) holds only when cr(Q)=1 or cr(Q D P)=1. (See Exercise 3.15.) This
is a triviality result: It shows that Equation (3.49) can hold only in trivial
cases, namely over the narrow range of conditionals for which the agent is
either certain of the antecedent or certain of the conditional itself. Equation
(3.49) does not express a truth that holds for all conditional credences in all
propositions; nor does (3.48) when “—” is read materially.

Perhaps the equivalence in (3.48) can be saved from this objection by
construing its “—” as something other than a material conditional. But David
Lewis (1976) provided a clever objection that works whichever conditional —
we choose. Begin by selecting arbitrary propositions P and Q. We then derive
the following from the proposal in Equation (3.48):

cr(Q - P)=cr(P| Q) [from (3.48)] (3.50)
cr(Q > P|P)=cr(P|Q&P) [see below] (3.51)
a(Q— P|P)=1 [Q& Pentails P]  (3.52)
cr(Q » P|~P) = cr(P| Q& ~P) [see below]  (3.53)

c(Q—- P|~P)=0 [Q & ~Prefutes P]  (3.54)
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c(Q > P)=cr(Q > P|P)-cr(P) +
cr(Q — P|~P) - cr(~P) [Law of Total Prob.]  (3.55)

c(Q—=>P)=1-cr(P)+0-cr(~P) [(3.52), (3.54), (3.55)] (3.56)
cr(Q — P) = cr(P) (3.57)
cr(P| Q) = cr(P) [(3.50)] (3.58)

Some of these lines require explanation. The idea of lines (3.51) and (3.53) is
this: We've already seen that a credence distribution conditional on a particular
proposition satisfies the probability axioms. This suggests that we should think
of a distribution conditional on a proposition as being just like any other
credence distribution. (We'll see more reason to think this in Chapter 4,
note 3.) So a distribution conditional on a proposition should satisfy the
proposal of (3.48) as well. If you conditionally suppose X, then under that
supposition you should assign Y — Z the same credence you would assign
Z were you to further suppose Y. In other words, anyone who maintains (3.48)
should also maintain that for any X, Y, and Z,

(Y- Z|X)=cr(Z| Y& X) (3.59)

In line (3.51) the roles of X, Y, and Z are played by P, Q, and P; in line (3.53)
its ~P, Q, and P.

Lewis has given us another triviality result. Assuming the probability axioms
and Ratio Formula, the proposal in (3.48) can hold only for propositions P and
Q such that cr(P | Q) = cr(P). In other words, it can hold only for propositions
the agent takes to be independent.?? Or (taking things from the other end), the
proposed equivalence can hold for all the conditionals in an agent’s language
only if the agent treats every pair of propositions in £ as independent!*

So a rational agent’s conditional credence will not in general equal her
unconditional credence in a conditional. This is not to say that conditional
credences have nothing to do with conditionals. A popular idea now usually
called “Adams’s Thesis” (Adams 1965) holds that an indicative conditional
Q — Pis acceptable to a degree equal to cr(P| Q).?* But we cannot maintain
that an agent’s conditional credence is always equal to her credence that some
conditional is true.

This brings us back to a proposal I discussed in Chapter 1. One might try to
relate degrees of belief to binary beliefs by suggesting that whenever an agent
has an r-valued credence, she has a binary belief in a traditional proposition
with r as part of its content. Working out this proposal for conditional
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credences reveals how hopeless it is. Suppose an agent assigns cr(P| Q) = r.
Would we suggest that the agent believes that if Q, then the probability of Pis r?
This proposal mangles the logic of conditional credences. Perhaps the agent
believes that the probability of “if Q, then P” is r? Lewis’s argument dooms this
idea.

I said in Chapter 1 that the numerical value of an unconditional degree of
beliefis an attribute of the attitude taken toward a proposition, not a constituent
of that proposition itself. As for conditional credences, cr(P| Q) =r does not
say that an agent takes some attitude toward a conditional proposition with
a probability value in its consequent. Nor does it say that the agent takes
some attitude toward a single, conditional proposition composed of P and Q.
cr(P| Q) = r says that the agent takes an r-valued attitude toward an ordered
pair of propositions—neither of which need involve the number r.

3.4 Exercises

Unless otherwise noted, you should assume when completing these exercises
that the credence distributions under discussion satisfy the probability axioms
and Ratio Formula. You may also assume that whenever a conditional credence
expression occurs, the condition has a nonzero unconditional credence so that
the conditional credence is well defined.

Problem 3.1. 2 A family has two children of different ages. Assume that each
child has a probability of 1/2 of being a girl, and that the probability that the
elder is a girl is independent of the probability that the younger is.
(a) Conditional on the older child’s being a girl, what’s the probability that
the younger one is?
(b) Conditional on at least one child’s being a girl, what’s the probability
that they both are?

Problem 3.2. 22 Flip and Flop are playing a game. They have a fair coin that
they are going to keep flipping until one of two things happens: either the coin
comes up heads twice in a row, or it comes up tails followed by heads. The first
time one of these things happens, the game ends—if it ended with HH, Flip
wins; if it ended with TH, Flop wins.
(a) What’s the probability that Flip wins after the first two tosses of the coin?
What’s the probability that Flop wins after the first two tosses of the
coin?

€202 Joquieidag g0 uo Jasn saleIqr LIN Ad +188705GE/191deUD/E 16 #4000/ W00 dno dlwspeoe)/:sdjy Wolj papeojumoq



3.4 EXERCISES 81

(b) Flip and Flop play their game until it ends (at which point one of them
wins). What's the probability that Flop is the winner?*®

Problem 3.3. 22 One might think that real humans only ever assign cre-
dences that are rational numbers—and perhaps only rational numbers involv-
ing relatively small whole-number numerators and denominators. But we
can construct simple conditions that require an irrational-valued credence
distribution. For example, consider the scenario below.
You have a biased coin that you are going to flip twice in a row. Suppose your
credence distribution satisfies all of the following conditions:
(i) You are equally confident that the first flip will come up heads and that
the second flip will come up heads.
(ii) You treatthe outcomes of the two flips as probabilistically independent.
(iii) Given what you know about the bias, your confidence that the two
flips will both come up heads equals your confidence in all of the other
outcomes put together.
Assuming your credence distribution satisfies the three conditions above, how
confident are you that the first flip will come up heads?*®

Problem 3.4. 22 Prove that credences conditional on a particular proposi-
tion form a probability distribution. That is, prove that for any proposition R
in £ such that cr(R) > 0, the following three conditions hold:
(a) For any proposition Pin £, cr(P|R) > 0.
(b) For any tautology Tin £, cr(T|R) = 1.
(c) For any mutually exclusive propositions P and Q in £,
cr(PV Q|R) =cr(P|R) + cr(Q| R).

Problem 3.5. 2 Pink gumballs always make my sister sick. (They remind her
of Pepto Bismol.) Blue gumballs make her sick half of the time (they just look
unnatural), while white gumballs make her sick only one-tenth of the time.
Yesterday, my sister bought a single gumball randomly selected from a machine
that’s one-third pink gumballs, one-third blue, and one-third white. Applying
the version of Bayes’s Theorem in Equation (3.12), how confident should I be
that my sister’s gumball was pink conditional on the supposition that it made
her sick?

Problem 3.6. 99
(a) Prove Bayes’s Theorem from the probability axioms and Ratio Formula.
(Hint: Start by using the Ratio Formula to write down expressions
involving cr(H & E) and cr(E & H).)

€202 Joquieidag g0 uo Jasn saleIqr LIN Ad +188705GE/191deUD/E 16 #4000/ W00 dno dlwspeoe)/:sdjy Wolj papeojumoq



82 CONDITIONAL CREDENCES

(b) Exactly which unconditional credences must we assume to be positive
in order for your proof to go through?

(c) Where exactly does your proof rely on the probability axioms (and not
just the Ratio Formula)?

Problem 3.7. 2 Once more, consider the probabilistic credence distribution
specified by this probability table (from Exercise 2.9):

o
e}
=

cr
0.1
0.2

0
0.3
0.1
0.2

0
0.1

- = A
- = A=A
||| |||

Answer the following questions about this distribution:

(a) What is cr(P| Q)?

(b) Relative to this distribution, is Q positively relevant to P, negatively
relevant to P, or probabilistically independent of P?

(c) What is cr(P| R)?

(d) What is cr(P| Q & R)?

(e) Conditional on R, is Q positively relevant to P, negatively relevant to P,
or probabilistically independent of P?

(f) Does R screen off P from Q? Explain why or why not.

Problem 3.8. 22 Prove that all the alternative statements of probabilistic
independence in Equations (3.15) through (3.18) follow from our original
independence definition. That is, prove that each equation (3.15) through
(3.18) follows from Equation (3.14), the probability axioms, and the Ratio
Formula. (Hint: Once you prove that a particular equation follows from
Equation (3.14), you may use it in subsequent proofs.)

Problem 3.9. 22 Show that probabilistic independence is not transitive. That
is, provide a single probability distribution on which all of the following are
true: X is independent of Y, and Y'is independent of Z, but X is not independent
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of Z. Show that your distribution satisfies all three conditions. (For an added
chili pepper of difficulty, have your distribution assign every state-description
a nonzero unconditional credence.)

Problem 3.10. 22 In the text we discussed what makes a pair of propositions
probabilistically independent. If we have a larger collection of propositions,
what does it take to make them all independent of each other? You might think
all that’s necessary is pairwise independence—for each pair within the set of
propositions to be independent. But pairwise independence doesn’t guarantee
that each proposition will be independent of combinations of the others.

To demonstrate this fact, describe a real-world example (spelling out the
propositions represented by X, Y, and Z) in which it would be rational for an
agent to assign credences meeting all four of the following conditions:

(i) ar(X]Y) = cr(X)
(ii) cr(X|2) = cr(X)
(iii) cr(Y|Z) = cr(Y)
(iv) ar(X|Y & Z) # cr(X)
Show that your example satisfies all four conditions.

Problem 3.11. 22 Using the program PrSAT referenced in the Further
Readings for Chapter 2, find a probability distribution satisfying all the
conditions in Exercise 3.10, plus the following additional condition: Every
state-description expressible in terms of X, Y, and Z must have a nonzero
unconditional cr-value.

Problem 3.12. 99

(a) The 2016-2017 NBA season has just ended, and you're standing on
a basketball court. Suddenly aliens appear, point to a spot on the
court, and say that unless someone makes the next shot attempted
from that spot, they will end your life. You're highly interested in self-
preservation but terrible at basketball; luckily James Harden and DeMar
DeRozan are standing right there. DeRozan says, “I had a better overall
shooting percentage than Harden this year, so I should attempt the
shot” Given the statistics on page 70, explain why DeRozan’s argument
is unconvincing.

(b) Suppose the aliens pointed to a spot that would yield a three-point
attempt. You're about to hand the ball to Harden, when DeRozan says,
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“I know that’s a three-pointer, and Harden shot better from three-point
range in general than I did this year. But from that particular spot, I had
a better percentage than him.” Is DeRozan’s claim consistent with the
statistics on page 70? (That is, could DeRozan’s claim be true while those
statistics are also accurate?) Explain why or why not.

Problem 3.13. After laying down probabilistic conditions for a causal fork,
Reichenbach demonstrated that a causal fork induces correlation. Consider
the following four conditions:

(i) cr(A]|C) > cr(A| ~C)

(ii) cr(B|C) > cr(B|~C)

(iii) cr(A & B|C) = cr(A|C) - cr(B| C)
(iv) cr(A & B|~C) = cr(A| ~C) - cr(B| ~C)

(a) 22 Assuming C is the common cause of A and B, explain what each
of the four conditions means in terms of relevance, independence,
conditional relevance, or conditional independence.

(b) 222 Prove that if all four conditions hold, then cr(A & B) > cr(A) -
cr(B).

Problem 3.14. 22 In Section 3.3 I pointed out that the following statement
(labeled Equation (3.43) there) does not hold for every constant k and propo-
sitions A, B, and C:

“cr(C|A) = k” and “cr(C| B) = k” entail “cr(C|AV B) = k”

(a) Describe a real-world example (involving dice, or cards, or something
more interesting) in which it’s rational for an agent to assign cr(C | A) =
kand cr(C|B) = kbutcr(C| AV B) # k. Show that your example meets
this description.

(b) Prove that if A and B are mutually exclusive, then whenever cr(C| A) =
k and cr(C| B) = k it’s also the case that cr(C| AV B) = k.

Problem 3.15. 22 Fact: For any propositions P and Q, if cr(Q)> 0 then
cr(QD P) > cr(P| Q).

(a) Starting from a language £ with atomic propositions P and Q, build a
probability table on its state-descriptions and use that table to prove the
fact above.

(b) Show that Equation (3.49) in Section 3.3 entails that either cr(Q) = 1
orcr(Q D P) = 1.
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3.5 Further reading

INTRODUCTIONS AND OVERVIEWS

Alan Héjek (2011a). Conditional Probability. In: Philosophy of Statistics. Ed.
by Prasanta S. Bandyopadhyay and Malcolm R. Forster. Vol. 7. Handbook
of the Philosophy of Science. Amsterdam: Elsevier, pp. 99-136

Describes the Ratio Formula and its motivations. Then works through a
number of philosophical applications of conditional probability, and a number
of objections to the Ratio Formula. Also discusses conditional-probability-first
formalizations (as described in note 3 of this chapter).

Todd A. Stephenson (2000). An Introduction to Bayesian Network Theory
and Usage. Tech. rep. 03. IDIAP

Section 1 provides a nice, concise overview of what a Bayes Net is and how
it interacts with conditional probabilities. (Note that the author uses A, B to
express the conjunction of A and B.) Things get fairly technical after that as he
covers algorithms for creating and using Bayes Nets. Sections 6 and 7, though,
contain real-life examples of Bayes Nets for speech recognition, Microsoft
Windows troubleshooting, and medical diagnosis.

Christopher R. Hitchcock (2021). Probabilistic Causation. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2021

While this entry is primarily about analyses of the concept of causation using
probability theory, along the way Hitchcock includes impressive coverage of
the Principle of the Common Cause, Simpson’s Paradox, causal modeling with
Bayes Nets, and related material.

Crassic TEXTS

Hans Reichenbach (1956). The Principle of Common Cause. In: The Direc-
tion of Time. Berkeley: University of California Press, pp. 157-60

Text in which Reichenbach introduces his account of common causes in terms
of screening off. (Note that Reichenbach uses a period to express conjunction,
and a comma rather than a vertical bar for conditional probabilities—what we
would write as cr(A | B) he writes as P(B, A).)
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David David Lewis (1976). Probabilities of Conditionals and Conditional
Probabilities. The Philosophical Review 85, pp. 297-315

Article in which Lewis presents his triviality argument concerning probabili-
ties of conditionals.

EXTENDED DisCcUsSION

Bas C. van Fraassen (1982). Rational Belief and the Common Cause Prin-
ciple. In: What? Where? When? Why? Ed. by Robert McLaughlin. Dor-
drecht: Reidel, pp. 193-209

Frank Arntzenius (1993). The Common Cause Principle. PSA: Proceed-
ings of the Biennial Meeting of the Philosophy of Science Association 2,
pp. 227-37

Discuss the meaning and significance of Reichenbach’s Principle of the Com-
mon Cause, then present possible counterexamples (including counterexam-
ples from quantum mechanics).

Alan Hajek (2011b). Triviality Pursuit. Topoi 30, pp. 3-15

Explains the plausibility and significance of the claim that probabilities of
conditionals are conditional probabilities. Then canvasses a variety of Lewis-
style triviality arguments against that claim.

Notes

1. Here’s a good way to double-check that 6 & E is equivalent to 6: Remember that
equivalence is mutual entailment. Clearly 6 & E entails 6. Going in the other direction,
6 entails 6, but 6 also entails E. So 6 entails 6& E. When evaluating conditional credences
using the Ratio Formula, we'll often find ourselves simplifying a conjunction down to
just one or two of its conjuncts. For this to work, the conjunct that remains has to entail
each of the conjuncts that was removed.

2. When I refer to an agent’s “credence distribution” going forward, I will often be
referring to both her unconditional and conditional credences. Strictly speaking this
extends our definition of a “distribution’, but since conditional credences supervene
on unconditional for rational agents, not much damage will be done.

3. Some authors take advantage of Equation (3.7) to formalize probability theory in
exactly the opposite order from the way I've been proceeding. They begin by introduc-
ing conditional credences and subject them to a number of constraints somewhat like
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Kolmogorov’s axioms. The desired rules for unconditional credences are then obtained
by introducing the single constraint that for all P in £, cr(P) = cr(P|T). For more on
this approach, its advocates, and its motivations, see Section 5.4.

. Bayes never published the theorem; Richard Price found it in Bayes’s notes and pub-

lished it after Bayes’s death in 1761. Pierre-Simon Laplace independently rediscovered
the theorem later on and was responsible for much of its early popularization.

. In everyday English “likely” is a synonym for “probable”. Yet R.A. Fisher introduced

the technical term “likelihood” to represent a particular kind of probability—the
probability of some evidence given a hypothesis. This somewhat peculiar terminology
has stuck.

. Quoted in Galavotti (2005, p. 51).
. For instance, we have to assume that the base rates of the alleles are equal in the

population, none of the relevant phenotypes is fitter than any of the others, and the
blue-finned fish don't assortatively mate with other blue-finned fish. (Thanks to Hayley
Clatterbuck for discussion.)

. Throughout this section and Section 3.2.1, I will assume that any proposition appearing

in the condition of a conditional cr-expression has a nonzero cr-value. Defining
probabilistic independence for propositions with probability 0 can get complicated.
(See e.g. Fitelson and Hajek (2014))

. One will sometimes see “screening off” defined without Equation (3.28) or its analogue.

(That is, some authors define screening off in terms of R’s making the correlation
between P and Q disappear, without worrying whether ~R has the same effect.)
Equation (3.28) makes an important difference to our definition: in the Baxter example
Idoes not screen off H from C according to our definition because when ~Iis supposed,
C becomes very relevant to H.

I have included Equation (3.28) in our definition because it connects our approach to
the more general notion of screening off used in the statistics community. In statistics
one often works with continuous random variables, and the idea is that random variable
Z screens off X from Y if X and Y become independent conditional on each possible
value of Z. Understanding proposition R as a dichotomous random variable (Chapter 2,
note 7) converts this general definition of screening off into the particular definition I've
given in the text.

Many authors also leave Equation (3.26) (or its analogue) implicit in their definitions
of “screening oft”. But since examples of screening off always involve unconditional
correlations that disappear under conditioning, I've made this feature explicit in my
definition.

Not to be confused with the Rambler’s Fallacy: I've said so many false things in a row,
the next one must be true!

Twenty flips of a fair coin provide a good example of what statisticians call IID trials.
“IID” stands for “independent, identically distributed” The flips are “independent”
because each is probabilistically independent of all the others; information about the
outcomes of other coin flips doesn’t change the probability that a particular flip will
come up heads. The flips are “identically distributed” because each flip has the same
probability of producing heads (as contrasted with a case in which some of the flips are
of a fair coin while others are flips of a biased coin).
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12.

13.

14.

15.

16.

17.

18.

19.

This paradoxical phenomenon is named after E.-H. Simpson because of a number of
striking examples he gave in his (1951). Yet the phenomenon had been known to
statisticians as early as Pearson, Lee, and Bramley-Moore (1899) and Yule (1903).
Ilearned about the Harden/DeRozan example from Reuben Stern, who in turn learned
about it from a reddit post by a user named Jerome Williams. (I copied the specific data
for the two players from stats.nba.com.) The UC Berkeley example was brought to the
attention of philosophers by Cartwright (1979).

Notice that these findings only address one potential form of bias that might have
been present in Berkeley’s graduate admissions. For instance, they’re consistent with
the possibility that women were being actively discouraged from applying to the less
selective departments.

I'm playing a bit fast and loose with the objects of discussion here. Throughout this
chapter we're considering correlations in an agent’s credence distribution. Reichenbach
was concerned not with probabilistic correlations in an agent’s credences but instead
with correlations in objective frequencies or chance distributions (about which more in
Chapter 5). But presumably if the Principle of the Common Cause holds for objective
probability distributions, that provides an agent who views particular propositions as
empirically correlated with some reason to suppose that the events described in those
propositions either stand as cause to effect or share a common cause.

You might worry that Figure 3.3 presents a counterexample to Reichenbach’s Principle
of the Common Cause, because G and § are unconditionally correlated yet G doesn’t
cause S and they have no common cause. It’s important to the principle that the causal
relations need not be direct; for Reichenbach’s purposes G counts as a cause of S even
though it’s not the immediate cause of S.

Just to indicate a few more complexities that may arise: While our discussion in the
text concerns “direct” common causes, one can have an “indirect” common cause that
doesn't screen off its effects from each other. For example, if we imagine merging
Figures 3.2 and 3.3 to show how the subjects parents’ genes are a common cause of
both smoking and drinking by way of her addictive personality, it is possible to arrange
the numbers so that her parents’ genetics don’t screen off smoker from drinker. Even
more complications arise if some causal arrows do end-arounds past others—what if in
addition to the causal structure just described, the parents’ genetics tend to make them
smokers, which in turn directly influences the subject’s smoking behavior?

Here I assume that a rational agent will entertain an indicative conditional only if
she takes its antecedent to be possible. For arguments in favor of this position, and
citations to the relevant literature, see Moss (2018, Sect. 4.3) and Titelbaum (2013a, Sect.
5.3.2). The analogous assumption for conditional credences is that an agent assigns a
conditional credence only when its condition is true in at least one of her doxastically
possible worlds.

One could study a kind of attitude different from the conditional credences considered
in this book—something like a subjunctive degree of belief. Joyce (1999) does exactly
that, but is careful to distinguish his analysandum from standard conditional degrees
of belief. (For instance, the arguments for the Ratio Formula given earlier in this
chapter do not extend to Joycean subjunctive credences.) Schwarz (2018) then evaluates
triviality arguments for subjunctive conditional credences much like the triviality
arguments for indicatives I will go on to consider in this section.
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I realize some of the “p”s and “q”s in this quote are flipped around from what one might
expect, but that’s how it’s printed in my copy of Ramsey (1931). Context makes clear
that the ordering is not why Ramsey rejects the proposed equivalents to “the degree of
belief in p given q”; hed still reject them were the order inverted.

A variety of recent positions in linguistics and the philosophy of language suggest
that indicative conditionals with modal expressions in their consequents do not obey
classical logical rules. Yalcin (2012), among others, classes probability locutions with
these modals and so argues that, inter alia, indicative conditionals with probabilistic
consequents do not keep modus tollens truth-preserving. (His argument could easily
be extended to disjunctive syllogism as well.) Yet the alternative positive theory of
indicative conditionals Yalcin offers does not analyze conditional credences in terms
of conditionals either, so even if he’s correct, we would still need an independent
understanding of what conditional credences are. (Thanks to Fabrizio Cariani for
discussion of these points.)

A careful reader will note that the proof given fails when cr(P| Q) takes an extreme
value. If cr(P| Q) = 0, the condition in cr(P| Q & P) will have unconditional credence
0, while if cr(P | Q) = 1, the condition in cr(P | Q & ~P) will have credence 0. So strictly
speaking the triviality result is that (3.48) can hold only when the agent takes P and
Q to be independent, or dependent in the strongest possible fashion. This is no more
plausible than the less careful version I've given in the text. (Thanks to Glauber de Bona
for being the careful reader who caught this for me!)

Fitelson (2015) proves a triviality result like Lewis’s using probability tables (instead
of proceeding axiomatically). Moreover, he traces the triviality specifically to the
combination of (3.48) with the assumption that the conditional — satisfies what’s
known as the “import-export” condition.

Interestingly, this idea is often traced back to a suggestion in Ramsey, known as
“Ramsey’s test” (Ramsey 1929/1990, p. 155n).

Thanks to Irving Lubliner for inspiring this problem.

This problem was inspired by a problem of Branden Fitelsons. Thanks to Catrin
Campbell-Moore for devising this particularly elegant set of conditions.
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