Wilson 2014, Rational Obstinacy

Idea: Memory loss, but not total: can pass on one of a limited set of messages (states of memory) to your future self.
\rightarrow Want to choose a protocol that makes the memory-states maximally informative.
\rightarrow When far more signals than memory, best protocol exhibits biases: strong (though not Kripkean) dogmatism, ignoring weak information, commutativity failures, influences of priors, and biased assimilation.

The Model:

A state of the world, say B_{H} (coin is biased-heads) or B_{T} (biased-tails). A choice between a safe or risky action. Say, $a_{S}=0$ and $a_{R}=\left\{\begin{array}{l}1 \text { if } B_{H} \\ -1 \text { if } B_{T}\end{array}\right.$ A finite set of memory states, say m_{1}, \ldots, m_{5}.

A finite set of (independent) signals about the state, say $s_{0}, s_{1}, s_{2}, s_{3}$, where $s_{i}=$ tossed 3 times and got i heads.

A constant (small) risk of termination, η, at which point you take the action recommended by your plan given your memory state.

A Bayesian decision-maker with prior p_{0} in B_{H} designs a protocol $\left\langle g^{0}, \sigma, d\right\rangle$ that includes

- A (distribution over) initial state(s) to start in g^{0}, or reset to;
- A transition function σ that, given a memory state and a signal, outputs a mixed strategy for shifting to a new memory state;
- A decision rule d which tells you which action to take given your state if the process terminates.
The Bayesian DM designs a protocol that maximizes expected payoff per period, i.e. time between terminations.
Goal is to take risky option iff B_{H}, i.e. to wind up in a high enough state (say, m_{4} or m_{5}) that you'll take the option if B_{H}, and to end up in a low enough state (say, m_{1}, m_{2}, m_{3}) that you'll decline it if B_{T}.

Given the true state (B_{H} or B_{T})—which says how likely you are to get various signals-a choice of protocol induces a Markov chain on memory states.
For simplicity, suppose for a moment that $\eta=0$.
Suppose ignore s_{1} and s_{2}, always move up/down 1 when see s_{0} / s_{3}. Given $B_{H}, P\left(s_{0}\right)=\left(\frac{1}{3}\right)^{3}=\frac{1}{27}, P\left(s_{1}\right)=\frac{6}{27}, P\left(s_{2}\right)=\frac{12}{27}$, and $P\left(s_{3}\right)=\frac{8}{27}$.

Effectively counts how many strong signals you've received, up to memory limit. Analogous to weight-minded memory from Singer et al.
$B_{H} \rightsquigarrow P(H)=\frac{2}{3} ;$
$B_{T} \rightsquigarrow P(H)=\frac{1}{3}$

Likelihood ratios $\frac{P\left(s_{i} \mid B_{H}\right)}{P\left(s_{i} \mid B_{T}\right)}=\frac{1}{8}, \frac{1}{2}, \frac{2}{1}, \frac{8}{1}$.

And, in Wilson's setting, go back to the initial state and keep playing forever

Intuitively, positive signals shifts up, negative ones down

Intuitively, take risky action iff high enough memory state to be confident of B_{H}, eg in m_{4} or m_{5}.

Subject to the constraint that each state has a η chance of terminating (and so reverting to g^{0}).

So:

$$
M_{B_{H}}=\left(\begin{array}{ccccc}
\frac{19}{27} & \frac{8}{27} & 0 & 0 & 0 \\
\frac{1}{27} & \frac{18}{27} & \frac{8}{27} & 0 & 0 \\
0 & \frac{1}{27} & \frac{18}{27} & \frac{8}{27} & 0 \\
0 & 0 & \frac{1}{27} & \frac{18}{27} & \frac{8}{27} \\
0 & 0 & 0 & \frac{1}{27} & \frac{26}{27}
\end{array}\right)
$$

And, given B_{T}, we get the 'inverted' chain:

$$
M_{B_{T}}\left(\begin{array}{ccccc}
\frac{26}{27} & \frac{1}{27} & 0 & 0 & 0 \\
\frac{8}{27} & \frac{18}{27} & \frac{1}{27} & 0 & 0 \\
0 & \frac{8}{27} & \frac{18}{27} & \frac{1}{27} & 0 \\
0 & 0 & \frac{8}{27} & \frac{18}{27} & \frac{1}{27} \\
0 & 0 & 0 & \frac{8}{27} & \frac{1}{27}
\end{array}\right)
$$

Then we can ask: what are the long-run behaviors of these processes? How can we choose the transition-probabilities so optimize our chances of ending up in a high state iff B_{H} ?

Time-slice reformulation: Can reformulate as an absent-minded-driver like situation, where each time-slice only knows m_{i} and the protocol chosen, so conditions on this (from the prior) and then transitions from their signal as they expect to be best.

Features

There are cutoff points in probabilities $p_{i}{ }^{1}$ such that m_{i} effectively represents that range of credence.
\rightarrow The cutoff points say how high a signal needs to shift p_{i} in order to transition to a higher or lower memory state.
(It's as if you only have 5 different credal states!)
As long as no signal is definitive, no state is absorbing.
\rightarrow No Kripkean dogmatism!
Now assume η is very low, so the process will run for a long time.
Then optimal protocol will ignore non-extreme states.
Will only move up/down memory states 1 at a time-effectively keeping track of how many strong signals on each side.

But not just doing this; some states are 'sticky': you don't always transition out of them when you get s_{0} or s_{3}, but instead do so with some probability (adopting a mixed strategy).

Why? Intuitively, you'll be knocked out of m_{5} too often. You'll be getting s_{3} signals, but won't be able to move up, so when you get s_{0} you'll drop out of it even though that s_{0} signal probably has lots of evidence

This is the discussion of 'team equilibria'. Result is that optimal protocol is one that each time-slice wants to follow
${ }^{1}$ Really, likelihood ratios $\frac{p_{i}}{1-p_{i}}$
I think it's that the prior, given that it finds itself in m_{i}, is in the range

I think...

Don't want to let yourself get stuck

Save your memory states for strong signals, since you're confident those are coming
against it which you've lost.
Need to choose exit probability so that, in expectation, will exit only when s_{0} s sufficiently numerous compared to $s_{3} s$.

How does reasoning actually work?
\Rightarrow With high probability, the Markov chain will mix—reach it's steadystate, long-run probabilities-by the time the process terminates and a decision must be made.

Example of mixing:

- Consider whether it's sunny or rainy on a given day. If sunny, $\frac{3}{4}$ likely to be sunny the next day; if rainy, $\frac{1}{2}$ likely to be sunny the next day: $\left(\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 2 & 1 / 2\end{array}\right)$
- Suppose sunny today. How likely to be sunny/rainy in two days?

$$
\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right)^{2}=\left(\begin{array}{ll}
\frac{11}{16} & \frac{5}{16}
\end{array}\right)
$$

- Generally, when we 'run' a Markov chain C for an arbitrarily long time n, then ${ }^{2}$ the probability of being in any given state (the long-run proportion of time you spend in each state) is given by C^{n}.

$$
\begin{aligned}
\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right)^{2}=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.5 & 0.5
\end{array}\right)^{2} & =\left(\begin{array}{cc}
0.6875 & 0.3125 \\
0.625 & 0.375
\end{array}\right) \\
& \left(\begin{array}{cc}
0.75 & 0.25 \\
0.5 & 0.5
\end{array}\right)^{3} \approx\left(\begin{array}{cc}
0.672 & 0.328 \\
0.656 & 0.344
\end{array}\right) \\
& \left(\begin{array}{cc}
0.75 & 0.25 \\
0.5 & 0.5
\end{array}\right)^{10} \approx\left(\begin{array}{cc}
0.666 & 0.333 \\
0.666 & 0.333
\end{array}\right)
\end{aligned}
$$

- So in long-run, $\frac{2}{3}$ of days are sunny.

Back to 'why stickiness?'
Limiting distribution of $\left(\begin{array}{lllll}0.0002 & 0.0017 & 0.014 & 0.109 & 0.875\end{array}\right)$
\rightarrow Get to $m_{5} 87.5 \%$ of the time, and to m_{4} or m_{5} (where correctly take risky action) 98.4% of the time.

Suppose instead only exit m_{1} or m_{5} half the time when get strong opposing signal. Obstinate policy leads, given B_{H} to:

$$
O_{B_{H}}=\left(\begin{array}{ccccc}
\frac{23}{27} & \frac{4}{27} & 0 & 0 & 0 \\
\frac{1}{27} & \frac{18}{27} & \frac{8}{27} & 0 & 0 \\
0 & \frac{1}{27} & \frac{18}{27} & \frac{8}{27} & 0 \\
0 & 0 & \frac{1}{27} & \frac{18}{27} & \frac{8}{27} \\
0 & 0 & 0 & \frac{1}{54} & \frac{53}{54}
\end{array}\right)
$$

$\left(\begin{array}{ll}0.6875 & 0.3125\end{array}\right)$
In time-slice interpretation: if you wake up with m_{5}, you know the most recent signal was s_{3}, and that you have an abundance of s_{3}; so when s_{0} comes in, you think 'bah!'
${ }^{2}$ So long as all states are in one 'communicating class', so there are paths between each pair

And symmetrically for $M_{B_{T}}$

Which has limiting distribution $\left(\begin{array}{lllll}0.0002 & 0.00091 & 0.0073 & 0.0583 & 0.933\end{array}\right)$
\rightarrow Gets to m_{5} now 93.3% of the time and to m_{4} or m_{5} (where correctly take risky action) 99.2% of the time.

Optimal exit probability, given s_{0}, seems to be around $\frac{1}{50}$.
Rationalizing(?) biases:

- No Kripkean dogmatism, BUT:
- Ignoring information. Ignore all but most informative signals
- Commutativity violations
$\left\langle s_{3}, s_{3}, s_{0}\right\rangle$ will lead to probably staying in m_{5}, whereas $\left\langle s_{3}, s_{0}, s_{3}\right\rangle$ will lead to being in m_{4}.
- Confirmation bias: if start with a higher prior for B_{H}, some interior states are sticky down: chance of going down, given s_{0}, is less than 1 .
- Biased assimilation: If I have a high prior for B_{H} and you have a low prior, and we both receive $\left\langle s_{0}, s_{3}\right\rangle$, then in expectation I'll go up (because of my interior sticky-down states) and you'll go up (because of your interior sticky-up states)

What should we make of all this?

1) If this models us, who is Bayesian DM?
2) Part of what's so interesting is that the biases are stable: you want to follow the (biased) protocol even once you're aware of them. (Team equilibrium interpretation.)
Where does the following intuitive argument go wrong? 'I am really confident of B_{H}; but I know if I were less limited I would probably be less confident, so I should be less confident now'.
3) Worry: we do/can have pretty fine-grained credences! Although memory is limited in many ways, not obvious that it's limited in this way.

Though I just eyeballed it, rather than using her formulas; may be different if interior states become sticky, which they probably should
Again, when η is close to 0 unlike Dallmann, this form of obstinacy appears given long run evidencegathering

And if low prior, some interior ones are sticky up

Unlike Kelly!

Does it hinge on not being able to become 'less' confident without dropping too far?

