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I. Setup

Cases: Dice vs. socks; people vs. knees; chaotic vs. enigmatic urns.

Features: (1) insensitivity; (2) irresolute assessments; (3) fuzzy bound-
aries; (4) ambiguity aversion; (5) miscalibration/bias.

Rigidly-designated probability functions (π) vs. descriptions (P).

Question-Reflection vs. Reflection.
Latter drives classic Bayesian results: (i) value of evidence, (ii) no wish-
ful thinking; (iii) convergence to the truth; and (iv) well-calibrated.

Reflection requires partitional updates (unlike train case) and prior clarity
(unlike Williamsonian feeling-cold case). Combined = Clear Bayes. Pretty much

every time you see a Bayesian model,
it’s a Clear-Bayes model.

II. Clear Bayes can’t model ambiguity

Clear Bayes implies introspection on priors and posteriors:

[P(q) = t] → P(P(q) = t) = 1
[EP(X) = t] → P(EP(X) = t) = 1

Hierarchical vs. higher-order uncertainty. Your more-informed self vs. yourself.

Arguments:

1) Insensitivity: the usual.
2) Irresoluteness: why random if known? Fluctuating? Fix a time.

Q: Better argument?
3) Fuzzy boundaries: you know where comparisons give out. Eg if

P(q) = 0.4702, then know that 472 is the first n such that more
confident of a1 ∨ ... ∨ an than q.

4) Ambiguity aversion: either know you prefer betting on q, or know
you prefer betting on ¬q.

5) Miscalibration: since you reflect your (current and) future opinions,
you expect to be calibrated, and (if independent) confident roughly
calibrated.

What if certain about your probabilities but uncertain about your pref-
erences/utilities? Bold Claim: that doesn’t make a difference.

Warm-up. The fire! Suppose secretly, deep down, you prefer money
to sentimental value. But you have every reason to think otherwise—
every reason to think you prefer the wedding album. What, in the
subjectivist sense, should you do?

Take the wedding album! That’s what
maximizes expected value, even if your
expectations are mistaken about what
your values are.



2

Now take a case where you’re uncertain (50-50) on whether your
preferences are represented by U1 or U2. Still, you know what
your expected values are—so you know what, given your uncertainty
about what you value, you should do! Source of uncertainty about U(a)

might be the outcome, or it might be
how you feel about the outcome. Why
matter?

⇒ if uncertain about preferences over outcomes but know your cre-
dence function, you’re still certain about your preferences over op-
tions, since those are driven by expected value.
⇒ epistemicist approach needs uncertainty about probabilities. Un-
certainty about values alone won’t do. Q: Is this right?

Subtle stuff about “interpersonal”
comparisons of utilities and re-scaling.

III. Against imprecision

Insensitivity: ✓

Irresoluteness: ? Yes for variance; but no explanation
for shape of variance.

Fuzzy boundaries: ✗

Ambiguity aversion: ✓, on conservative decision rules.
But such rules give stark violations of the value of evidence: so long
as you have beliefs about what you will do given imprecision, there
is [I think?] no ambiguity-inducing update for which there’s not some
decision-problem such that you’ll pay money to avoid the update. Eg Roger’s coin and 1:2 bets on p.

Miscalibration: sort of.
If imprecise about qi, then can avoid being1 confident that calibrated. 1 determinately

But in situations where you’re going to gain ambiguity (dilate) on the
qi, expect to be calibrated.

More generally: (1) hard to gain ambiguity, and (2) imprecise view is
implausible if paired with higher-order certainty—going to need higher-
order uncertainty anyways. How far can we get with just HOU?

IV. Why higher-order? Noise

Why can’t you just find out your credences by writing them down?
Because the thing you write down might not be your actual credence. Noise in cognitive system. Psycholo-

gists have known this forever.

Q1: How can you have precise probabilities/dispositions, and it also
be noisy?

· Generative model; credences = sampling dispositions.
Elicit them by drawing samples. (This is how many cognitive scientists
think the brain represents probabilities.)

· Think: urn in the head. Suppose 7 red and 3 black marbles. Then
C(red) = 0.7 (precisely!), but distribution of elicitations when draw
50 samples is: [»]
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· Why can’t we just look? Or if not, why not draw without replacement?
Because in reality a generative model is more like a computer pro-
gram: can’t be discerned by inspection, and drawing “without re-
placement” would involve altering it at each step.

Eg RandomReal[0,100]RandomInteger[1,4])

RandomReal[100,1000]
Mean? Median?
Sampling⇝ 13, 000 Median? ≈ 10

· How does sampling work when distribution is over more than two
possibilities, like a 3-place vector π = (0.2, 0.6, 0.2)? Sample from
(w1, w2, w3) at these rates. Drawing 50 samples and then counting
proportions⇝ (0.16, 0.68, 0.16), (0.14, 0.62, 0.24), (0.14, 0.54, 0.32),...

Q2: How can you and I have precise probabilities, and you not know
what mine are?
· Suppose you’re unsure of both q and my credence in q, P(q)—i.e. the

proportion of q-marbles in the urn in my head. How to represent
your (noisy) dispositions? (Your credences, C)?

· You have an urn in your head; each marble is labeled with both q/¬q,
and with P(q) = t for some t. (Maybe notecards, not marbles.)

Why? Marbles are outcomes in the
sample space—answer all relevant Qs.
You probably have multiple different
small models (urns) that you combine;
but if you combine them coherently
into a single probability distribution,
we can represent with a single urn.

· Eg
q ¬q

P(q) = 0.7 5 1

P(q) = 0.5 2 2

So C(q) = 0.7 and C(P(q) = 0.7) = 0.6. And C(q|P(q) = 0.7) = 5
6 ≈ 0.83, so

Reflection fails.

· If you ask me my credence, I’ll give you a number—but you’ll still
be unsure what my credence is, due to noise.

Eg suppose you know I’ll draw 20 samples and then announce the
mean. I announce 0.65. You know this is about 16.8%-likely if I
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have P(q) = 0.7, and about 7.1% likely if I have P(q) = 0.5, so
this provides some (inconclusive) evidence that I have P(q) = 0.7.
(If you condition on it—changing the contents of your urn—you’ll
jump from C(P(q) = 0.7) = 0.6 to C(P(q) = 0.7|said 0.65) ≈ 0.78.)
You’re still uncertain about P(q).

Q3: How can you have precise probabilities, and not know what yours
are? The same way.
· Suppose you’re unsure of both q and your credence in q, C(q). How

to represent your credences?
· You have an urn in your head; each marble is labeled with both q or
¬q, and with C(q) = t for some t.

· Eg
q ¬q

C(q) = 0.7 5 1

C(q) = 0.5 2 2

So C(q) = 0.7 and C(C(q) = 0.7) = 0.6. And C(q|C(q) = 0.7) = 5
6 ≈ 0.83, so

Reflection fails.

· You can try to figure out what you think by drawing some samples
and announcing the verdict (writing a number down).
Suppose you write down 0.65. This is some evidence that your cre-
dence was 0.7, but it’s inconclusive—even if you condition on it,
you’re still unsure what your (updated) credence is.

Since boosts confidence in C(q) = 0.7,
and C(q|C(q) = 0.7) > C(q) (you trust
yourself), sampling provides evidence
for q. You’re figuring out whether q by
figuring out what you think about q!

Note: C(q) is your credence before sam-
pling and updating on it; we need a
new description (like C+(q)) for your
credence after updating. In this case,
C+(q) = C(q|said 0.65).

Upshot: In any cognitive system in which credence elicitations are
noisy—e.g. if they are generated via sampling from a generative model—
then we should expect there to be higher-order uncertainty.
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V. How Go Higher-Order?

Warm-up: epistemic logic; how have beliefs and be uncertain what your
beliefs are? (W,B); believe q at w iff Bw ⊆ q.

Draw tree model.

Probability frames: (W, P), where Pw rigidly designates your credence
function at w.

Example: The Glance. Either it looked headsy (l) or it looked tailsy (l).
Conditional l, you’re 2

3 -confident of heads (h): P(h|l) = 2
3 . Conditional

on l, you’re 1
3 -confident of heads: P(h|l) = 1

3 . You know that much.

The trouble is, you’re not sure confident you are that it looked headsy.
If it did look headsy, you’re 2

3 -confident it did—in which case you’re
(e.g.) 2

3 ·
2
3 = 4

9 -confident it both looked headsy and landed heads. If it didn’t look headsy, you’re 1
3 -

confident it did.

P =


lh lt lh lt
4/9 2/9 1/9 2/9

4/9 2/9 1/9 2/9

2/9 1/9 2/9 4/9

2/9 1/9 2/9 4/9



(
lh lt lh lt
2/3 1/3 0 0

)

(
lh lt lh lt
0 0 1/3 2/3

)
2/3

1/3

2/3

1/3

Notice:

1) Since how it looks determines your credences, but you’re unsure
how it looks, you’re unsure what your credences are.
If it looks headsy, P(h) = 5

9 . If it looks tailsy, P(h) = 4
9 . ⇒ [P(h) = 2

3 ] = {lh, lt} = l, and
[P(h) = 1

3 ] = {lh, lt} = l.And if l, P(l) = 2
3 while P(l) = 1

3 .
So if l, P(P(h) = 5

9) =
2
3 , while P(P(h) = 4

9) =
1
3 .

2) Uncertainty all the way up:
And if l, P(P(h) = 5

9) =
1
3 , while P(P(h) = 4

9) =
2
3 . ⇒ [P(P(h) = 5

9 ) =
2
3 ] = [P(l) = 2

3 ] = l

So, if l, P(P(P(h) = 5
9) =

2
3) =

2
3 . And so on all the way up.

3) Due to noise, sampling from your opinions (writing down a num-
ber) would reduce but not eliminate this higher-order uncertainty. Unless took infinitely many samples.

4) Reflection fails: P(h|P(h) = 5
9 ) =

2
3 .

Why? Because learning what your opinions are gives you new infor-
mation—it tells you how things looked! You were 5

9 only because you were un-
sure of that fact.

5) New Reflection holds: P(q|P = π) = π(q|P = π).
Conditional on having a given set of opinions, you adopt the opin-
ions they would have upon learning as much. That’s why we can “factorize” the

frame into cells of“informed” proba-
bilities with weights between them.

VI. Getting our features

Take a simplified version of the socks case: you’re unsure what your
best guess is:
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Best guess

15 .05

16 0.1
17 0.2

18 0.3
19 0.2

20 0.1
21 .05

18

16 .05

17 0.1

18 0.2
19 0.3

20 0.2
21 0.1
22 .05

19

17 .05

18 0.1
19 0.2
20 0.3

21 0.2
22 0.1
23 .05

20

18 .05

19 0.1

20 0.2
21 0.3

22 0.2
23 0.1
24 .05

21

19 .05

20 0.1
21 0.2
22 0.3
23 0.2
24 0.1
25 .05

22

0.3
0.4

0.3

0.3

0.4
0.3

0.3

0.4
0.3

0.3

0.4
0.3

0.3

0.4
0.3

· · ·

· · ·

Insensitivity: Sort of.

Numbers in cells = worlds

Blue numbers within cell C represent
the conditional probabilities of each
world, given cell C. (All worlds agree
on these conditional probabilities.)

Arrow labeled t from cell x to cell y
says: if in cell x, you’re t-confident
you’re in cell y.

⇒ Probabilities of world w in cell C =
probability of C (arrow) × probability
of w given C (blue number).

Not strictly, since P (hence EP) is always precise. So if EP(X) = EP(Y),
then EP(X + 1) > EP(Y).
But implies that the relation “you doubt that your estimate for A is
higher than your estimate for B” is intransitive. Mimic negative intransitivity.

E.g. X = pairs of socks, Y = number of 1–4 rolls2. Say best guess is 20. 2 So P(EP(Y) = 20) = 1

Then P(EP(X) > EP(Y)) = 0.3,3 and 3 and P(EP(X) < EP(Y)) = 0.3

P(EP(X + 1) > EP(Y)) = 0.7; but If made uncertainty about estimates
wider, could make jump in probability
arbitrarily small

P(EP(X + 1) > EP(X)) = 1.
Also explains “graded incomparability”: why you become steadily
more confident in your comparisons as Caspar gives me more socks.

Irresoluteness: ✓
Comes from sampling/noise interpretation. Might also get directly: if uncer-

tain about your credences, might mis-
name them. C(q) ̸= EC(C(q)) ̸=
EC(EC(C(q))) ̸= · · ·

Fuzzy boundaries: ✓
If best guess is 20, then “the greatest integer n such that your estimate
is higher than n” is in fact 19. But you don’t know that—you assign it
40% probability. You’re 30%-confident that the answer is 18 and 30%-
confident that it’s 20. With wider uncertainty bands, we

could make these probabilities arbi-
trarily low.

Likewise generally. If n is 18, then wonder whether n is 17, 18, or 19.

Ambiguity Aversion. Bleh.
If think of decision as “Bet1, or instead Bet2 or Bet3—whichever looks
best”, and don’t trust your judgments, then can be ambiguity averse.
At least this model of ambiguity allows the value of evidence. E.g. in the looks-headsy model.

Miscalibration: ✓
Since Reflection will always fail, you generally won’t expect your am-
biguous judgments to be calibrated.
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