
1

Hahn and Harris 2014: What Does it Mean to be Biased?
Kevin Dorst 24.223 Rationality

I. Statistical bias

Putative cases of confirmation bias:

· Wason, number-progression rules. “Positive test strategy.” 2-4-6 satisfies rule. What is rule?

· Pseudodiagnositicity. Hypothesis: Jim is an introvert. “Do you ever like to be alone?”

· Biased assimilation. Kelly 2008

· Selective exposure. Check NYT or WSJ?

Every inductive or decision method sometimes misfires. If we know the
details of how it works, we can even predict when it misfires. So how “Believe in accord with your evidence"

misfires whenever your evidence is
misleading...

can we assess whether the deviation is irrational?

Proposal: bias as expected deviation from accurate belief / best decision.
Irrational bias as expected deviation that is common and costly.

Why not say just any expected deviation?
H&H: because even optimal (Bayesian) beliefs/decisions sometime ex-
hibit expected deviations from accurate beliefs.

Let eX be an estimator of X, i.e. a function from data/evidence to num-
bers that are your best estimate of a variable X.

eX is a statistically unbiased estimator of X1 iff for all thresholds t, EP(eX|X = 1 wrt P!

t) = t. ⇔ ∀t : EP(eX − X|X = t) = 0.

Wrt which distribution? H&H don’t say, presumably because they
think it won’t matter. Either subjective or objective probabilities will
(on their definition) often agree. We’ll come back to this...

Fact: so-defined, Bayesian estimators are biased. More generally, there
is a bias-variance tradeoff.

Lower-variance estimators are less
misled by misleading data (less overfit-
ting), but exhibit more bias. Unbiased
estimators have high variance and are
prone to overfitting.Example: X = the bias of this coin. We’ll flip it 10 times.

· Unbiased estimator: proportion heads. (“Frequentist estimator”)
But high variance—likely to be inaccurate. Clear when toss only 1 or 2 times.

· Biased estimator: mean of Bayesian posterior that begins uniform
over biases.

Beta(1,1) prior. If see k heads and 10 −
k tails, go to Beta(1 + k, 1 + 10 − k)

Biased: conditional on X = 1, expected estimate is EP(eX|10 heads) =
Mean(Beta(11, 1)) = 11

12 ≈ 0.92 < 1 = X.

Fact: Expected2 accuracy of Bayesian posterior is higher than that of 2 Relative to Bayesian priors! Or objec-
tive ones if we sample from coin biases
uniformly.

proportion-heads.

So, they conclude, bias can be good!
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II. Bayesian bias?

Is this the right definition of bias?

eX is a Bayesian-unbiased estimator of X iff EP(eX − X) = 0. Iff EP(eX) = EP(X)

On this definition, there need be no bias-variance tradeoff. The above
Bayesian posterior is unbiased!

How do the two definitions do across cases?

1) Your future estimate of X, after learning it’s value.

2) Your posterior estimate of X, after conditioning on the true cell of a
partition. E.g. an indicator about X

Suppose the partition is trivial: Π = {W}. Their definition says your
posterior is biased!

3) Conglomerability failures are biased.
Bill is delusional, so that no matter what he sees, he’ll increase his
confidence that it landed heads, eX, to 0.8.

E(eX − X) = P(X = 1)(0.8 − 1) + P(X = 0)(0.8 − 0)

= 0.5 ∗ (−0.2) + 0.5 ∗ 0.8 = 0.3

Is bias necessarily bad? No:

A biased but useful estimate: All Jill knows is that I’ll flip a fair coin.
But you and I know that if it lands heads (X = 1), I’ll tell her it did,
and if it lands tails (X = 0) I’ll tell her nothing.

eX = Jill’s future credence: if X = 1, then eX = 1; and if X = 0, then
eX = 0.5. So biased:

Your prior values Jill’s future credence
in heads.

E(eX − X) = P(X = 1)(1 − 1) + P(X = 0)(0.5 − 0)

= 0.5 ∗ 0 + 0.5 ∗ 0.5 = 0.25

Q: Pros and cons of these alternative definitions of bias? Which is
better?
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