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Abstract
I introduce a variety of examples and features of ambiguous judgments, the basics of
standard Bayesian models, and argue that they can’t properly account for it. Does
that mean we must we move to imprecise Bayesian models? No. Due to noise in our
cognitive systems, we should expect people to have higher-order uncertainty about what
their opinions are. I show how to model this, and argue that it respects the features of
ambiguous judgments better than the imprecise model.

1 Clarity and Ambiguity

Sometimes, our subjective assessments are clear : we know exactly which of two things is
more likely, or which of two things we want more. Other times, they are ambiguous: we’re
unsure which is more likely, or which we want more—perhaps there’s not even a fact of the
mater. Here are some cases:

Dice vs. Socks.
Clear: This is a fair die; I’m going to roll it 30 times. What’s your best estimate for
the number of times it’ll land between 1–4? That’s clear: 4

6 · 30 = 20 times. You’re
far from sure that this estimate is accurate—there’s a very good chance the number is
higher or lower. But you are (or should be) sure this is the rational estimate for you to
have—if your peer said 21 or 19, you’d think they were confused or misinformed. By
the same token, you definitely prefer to bet that it’ll land 1–4 at least 19 times than
that it won’t.
Ambiguous: I’m a runner, in my 30s, and an academic. What’s your best estimate
for the number of pairs of socks I own? That’s ambiguous: if forced to pick, you’d
no doubt come up with a number—say, 20 pairs. But not only are you far from sure
that this estimate is accurate, you’re also far from sure that it is the right (rational)
estimate for you to have—you could just as well have said 21 or 19, and you wouldn’t
look askance at someone who did. By the same token, it’s unclear whether you prefer
to bet I have at least 19 pairs than that I don’t.
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1 CLARITY AND AMBIGUITY

People vs. knees
Clear: Look around you. What’s the largest n such that you’re sure that there are at
least n people in the room? Now, this might be hard—if you’re reading this in a hotel
lobby, or a football stadium, it will be. But for those of us sitting in offices or seminar
rooms, it’s clear enough—5, as the case may be.
Ambiguous: Look down. What’s the largest n such that you’re sure that the top of
your knee is at least n inches above the floor? Don’t do any calculations—just try to
figure it out based on how it looks. That’s ambiguous. I’m sure it’s at least 20 inches.
I’m probably sure it’s at least 25. Definitely not 30. But where does my certainty give
out? It’s hard to say.
Chaotic vs. enigmatic urns
Clear: I have an urn that was filled with a complicated rube-goldberg machine: a
matchstick fell on a mousetrap which triggered several balls to chaotically knock down
some (but not all) of the walls holding back marbles—some red, others blue. You have
no idea how this works, but you know Caspar has studied it in detail, is vigilant and
reasonable, and has observed the process closely many, many times before. He says
he’s precisely 60% confident that when I draw a marble out of the urn, it’ll be red.
How confident are you that it’ll be red? That’s clear: 60%.
Ambiguous: Here’s another urn. It has 10 marbles in it total. Some are red, the rest
are blue. By the way: I like the color blue. I’m about to draw a marble. How confident
are you that the one I’ll draw is red? That’s ambiguous: since you have so little to go
on, maybe 50%? But the previous urn likely had more red marbles, so maybe you are
(or should be) closer to 55% or 60%? On the other hand, I just told you I like blue,
so maybe that should skew you down to 45%. On the other other hand, maybe I’m
messing with you, so that you should think red is more likely since I told you I like
blue. But on the other other other hand...
Conflicting tosses vs. testimony
Clear: I rolled an 11-sided die to determine which coin to grab. They have differing
biases: one of them lands heads 0% of the time, another 10%, another 20%,... and the
final one 100% of the time. I’ve tossed it twice. On the first toss, it landed heads. On
the second, it landed tails. How confident are you that it’ll land heads on the next
toss? That’s clear: 50%. The conflicting bits of evidence perfectly balance out.
Ambiguous: You know that Roger’s in his office on 50% of weekdays. You’ve asked two
people about it. Caspar said he’d talked to him, and that Roger won’t be in tomorrow.
Kevin said he’d talked to him, and that Roger would be in tomorrow. When you told
each of us about what the other said, we both simply shrugged their shoulders and
said, “Huh, weird.” How confident are you that Roger will be in his office tomorrow?
That’s unclear: maybe 50%—maybe your amount of trust in each of us balances our
perfectly. But maybe you should trust Kevin a bit more (he’s more fastidious) and so
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be 60%. Or maybe you should trust Caspar a bit more (he’s known Roger for longer)
and so be 40%.
Searching for marbles vs. words
Clear: I have two urns; one contains 2 red marbles, the other contains 1 black and 1 red
marble. I flipped a coin to determine which I’m holding. You reach in, pull a marble
out, and discover that it’s red—you failed to find a black marble. How confident are
you that the urn contains a black marble? That’s clear: 1

3 confident.1

Ambiguous: I have two word-search tasks—strings of letters with some blanks. One is
completable (by an English word), the other is not. I flipped a coin to determine which
to show you. Here it is—you have 5 seconds to try to find a word: ST RE. One.
Two. Three. Four. Five. Time! Supposing you failed to find a word, how confident
are you there’s a word that completes the string? That’s unclear. Maybe 30%? Maybe
40% (maybe you’re bad at this, so failing to find one isn’t much evidence). Maybe 20%
(you should have expected to find one, so failing to find one is strong evidence).2

These cases illustrate different sources of clarity or ambiguity. Dice are clear because
you have knowledge of the chances; socks are not because there’s so much disparate, weak
evidence to go on, and you reasonably wonder whether you know anything else that’s rel-
evant. The number of people in the room is clear because it’s discrete and you can count;
the height of your knee is ambiguous because of the vagueness or fuzziness of your own
perception. The chaotic urn is clear because you have a clear expert opinion to defer to,
while the enigmatic urn is ambiguous because you have a little bit to go on, and reasonably
wonder what to do with it. The conflicting coin tosses are clear because (again) you have
chance information, while the conflicting testimony is unclear because you’re not sure how
to weigh my claim against Caspar’s. Failing to find a black marble provides clear (though
not definitive) evidence because you know the chances, while failing to find a word provides
ambiguous evidence because you don’t know how likely you did (or should) have thought
you were to find it if there is one (not to mention the fact that there are lots of subtle bits of
evidence you got beyond ¬find, e.g. how word-like it seemed and how many failed attempts
you managed).

Despite these differences, across these cases, there’s a common contrast between your
attitudes in the clear version and the ambiguous version. Let’s note some of its features:

Irresolute assessments. In the ambiguous cases, your attitudes are less robust
or resolute than in the clear ones. This shows up as stochasticity: There is some
randomness (and arbitrariness) in your judgment in the ambiguous cases. If I’d asked
you in different circumstances, there’s a good chance your estimate for my number of
socks (or height of your knee, or probability of a red marble, or...) would’ve been a

1P (1 red|red) = P (1 red)·P (red|1 red)
P (1 red)·P (red|1 red)+P (2 red)·P (red|2 red) = 0.5·0.5

0.5·0.5+0.5·1 = 1
3
.

2P (word|¬find) = P (word)·P (¬find|word)
P (word)·P (¬find|word)+P (¬word)·P (¬find|¬word) . But what is P (¬find|word)?
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bit higher or a bit lower. Not so in the clear cases: excepting situations of serious
confusion, when faced with the question about die rolls you’ll answer ‘20 times’ every
time.
Insensitivity. In the ambiguous cases, your comparative-confidence judgments (and
resulting preferences amongst bets) seem insensitive to mild sweetening. Let Abe’s-
Run be the proposition that this penny I’m holding will land heads 10 times in a row
(probability = 1

210 = 1
1024 ). You’re clearly more confident in completable or Abe’s-Run

than in completable, but it’s not clear whether you’re more confident in completable
than in 1-red, nor vice versa.
Fuzzy boundaries. When your judgments are ambiguous, it’s usually unclear where
the ambiguity gives out. We ran a fair lottery with 1000 people in it; let ai be the
claim that the ith person won, so P (ai) = 1

1000 . Clearly you’re more confident of
a1 ∨ a2 ∨ ... ∨ a1000 (think of this as A++++...) than you are that I have at least 20
pairs of socks (q). Clearly you’re less confident of a1 than you are that I have at least
20 pairs of socks. But what’s the first n such that you’re more confident of a1∨a2∨...an
than of q? It’s hard to say.
Ambiguity aversion. You can choose between three bets:

Bet1: $100 if heads, $0 if tails.
Bet2: $100 if q (I have at least 20 pairs of socks), $0 if ¬q.
Bet3: $100 if ¬q , $0 if q.

Which would you prefer? If the ambiguous judgment q is chosen correctly (so that
people are close to 50%-confident of it), most people prefer Bet1—they tend to be
ambiguity averse, preferring to bet on claims for which they have clear judgments than
on ones for which their opinions are ambiguous (Ellsberg 1961; Halevy 2007; Kovárík
et al. 2016).
Biases and miscalibration. Suppose we repeat the 30-die-rolls hundreds of times.
How confident are you that the average number of 1–4 rolls will be around 20? Pretty
confident, I imagine.
Now suppose we have you estimate all sorts of things like the socks: How many fish has
Caspar owned throughout his life? How many chairs has Roger bought? How many
times has Sally moved? Etc. Gather up all the instances of these cases in which (as
with my socks) you estimate the number to be 20. How confident are you that the
average number across all these cases will be around 20? Pretty doubtful, I imagine.

Empirically, people are much more likely to exhibit various forms of biased processing
of evidence when the evidence is contested, mixed, or complex (i.e. ambiguous). One
result of this is miscalibration: of all the quantities they (ambiguously) estimate to be
(say) 20, the average of these quantities if often far from 20.3 A related finding is

3E.g. Lichtenstein et al. 1982; Glaser and Weber 2010; Moore et al. 2015; Peterson and Beach 1967;
Koehler et al. 2002; Tetlock 2009; Brenner et al. 2005; Ortoleva and Snowberg 2015; Dorst 2023a.
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selective sensitivity : when new evidence is hard to interpret, people are much more
likely to let their prior beliefs or motivations influence how they interpret it.4

What’s the best way to model, explain, and (maybe) rationalize these features of am-
biguous judgments?

There are two main approaches. The imprecise model says that rather than modeling
your beliefs and values with a single probability and utility function, we should instead model
them with a set of probability and a set of utility functions—the ones that are consistent
precisifications of your imprecise state. The higher-order model says that we can still model
your beliefs and values with a single probability and utility function—all we need to is
acknowledge that often you are unsure what you believe, i.e. you have a probability function
which is unsure which probability function you have. I’ll make a case for the higher-order
model. (See Carr 2021 for a related but distinct set of arguments.)

2 Bayesian Basics

We can’t properly model ambiguous judgments using the standard Bayesian machinery—
namely, that rational people’s beliefs can be represented with a single, precise probability
function, their desires can be represented with a precise utility function, and they always act
so as to maximize expected utility. In this section I’ll say more about what this standard
picture looks like, as an [Argh! More hairy than I’d hoped] set up for what’s to come.

2.1 Total probability, Reflection, and Partitional Updating

Fix a set of epistemically possibly worlds, W—for simplicity, let’s suppose W is finite. We’ll
understand it as the set of finest-grained possibilities the agent we’re modeling leaves open—
we can think of it as the complete answer to a (set of) question(s) (Hamblin 1976). These
worlds should be fine-enough grained to settle any relevant question that the agent is unsure
of. A proposition (or an event or a claim) is a way the world might be—a subset of q ⊆ W ,
picking out the ways q could be true. We can handle logic with set theory: q is true at world
w iff w ∈ q; ¬q is the complement of q in W , i.e. W − q = {w ∈ W : w /∈ q}; given two
propositions q1 and q2, q1&q2 is the intersection q1 ∩ q2, q1 ∨ q2 is the union q1 ∪ q2, the
material conditional q1 → q2 is ¬q1 ∪ q2, and so on.

A probability function π over W is an assignment of non-negative numbers to the wi ∈ W

that sum to 1. Ordering our worlds in some canonical order w1, ..., wn, we can think of a
probability function as a vector π = (π1, π2, ..., πn) where πi = π(wi) is the probability
assigned to world i. This gives us the probabilities of every maximally-specific proposition;
other probabilities are gotten by summing over the worlds in the relevant proposition: π(q) =∑

w∈q π(w).

4E.g. Lord et al. 1979; Kelly 2008; Kahan et al. 2017; Kunda 1990; Nickerson 1998; Mercier and Sperber
2011; Ditto et al. 2019.
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For instance, suppose you know the coin I’m holding is either 2
3 -biased toward heads or

2
3 biased toward tails, and you’re currently 50-50 between those possibilities. The question
W is how will it land when tossed, and is it biased?. Let h and t be the propositions that
it lands heads and tails, and let bh and bt be the propositions that it’s biased toward heads
and tails, respectively. Let’s order them like so: (h&bh, h&bt, t&bh, t&bt). I’ll sometimes
drop the & and simply smoosh conjunctions together, so we can more compactly write:
(hbh, hbt, tbh, tbt). A probability function over these possibilities is simply a vector over
them—for instance, you probably think it’s 1

2 · 2
3 = 1

3 likely to be biased heads and land
heads, while it’s 1

2 ·
1
3 = 1

6 -likely to be biased heads and land tails, etc. Then your distribution
over (hbh, hbt, tbh, tbt) is π = ( 13 ,

1
6 ,

1
6 ,

1
3 ). Thus, summing over the h-possibilities, you are

1
3 + 1

6 = 1
2 -confident that it’ll land heads.

Fix an agent at a given time—say you, now. You are probabilistic only if your comparative
confidence can be represented with a single, precise probability function π: for all q, p, you’re
more confident of q than p iff π(q) > π(p). This implies that your comparative confidences
form a total order over the propositions q ⊆ W about W : for any p, q, either you’re more
confident of one than the other, or you’re equally confident in them.

In addition to comparative confidences (and estimates), you have conditional comparative
confidences (and estimates). You’re more confident that p this fair die will land 1–4 than
that q it’ll land 5–6: π(p) > π(q). But conditional on it landing 4–6 (r), you’re more
confident it’ll land 5 − 6 than 1 − 4: π(p|r) < π(q|r). This is a synchronic feature of your
mental state now, not necessarily tied to what happens if you learned r. (Maybe learning r

would send you into a mental breakdown and disrupt all your comparative confidences.) For a
probability function, conditional probabilities are given by the ratio formula: π(q|r) = π(q∩r)

π(r) .
(When π(r) > 0. When it equals 0, things get messy. Ignore the mess.) In our vector
notation, that means that conditioning on r is equivalent to zeroing out the ¬r-possibilities
and “renormalizing” so that the entries in the new vector sum to 1.

For example, if you condition your above distribution on the coin landing heads, you
start with π = ( 13 ,

1
6 ,

1
6 ,

1
3 ), zero out to get ( 13 ,

1
6 , 0, 0), and then renormalize by dividing each

entry by the remaining total (which equals 1
3 + 1

6 = 1
2 = π(h)) to get π(·|h) = ( 23 ,

1
3 , 0, 0).

Thus after conditioning on the coin landing heads, you become 2
3 -confident that it’s biased

toward heads. (Notice: since a zeroed-out-and-renormalized vector is still a probability
vector, it follows that for any r, π(·|r) is a probability function as well, so follows all the
same theorems.)

Let’s add to probabilism that your comparative conditional confidences can also be rep-
resented by a probability function: there’s a π such that for all p, q, r: you’re more confident
of p given r than q given r iff π(p|r) > π(q|r). That implies that your conditional comparative
confidences form a total order.

Now, it shouldn’t be called Bayesianism. It’s called that because of Bayes theorem, which
is important. Sometimes. Sort of. Whatever. What it should be called is Total-Probability-
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ism. Doesn’t roll off the tongue, I know, but even Bayes theorem would be useless if not for
the theorem of total probability. What’s it say?

A question is a partition of W—i.e. a way of dividing logical space into mutually exclus-
ive (only one of them can be true) and collectively exhaustive (at least one of them is true)
partition-cells. The partition-cells can be thought of as complete answers to the question.
Who stole the cookies from the cookie jar? is the partition {Caspar stole the cookies, Kevin
stole the cookies,..., Bob stole the cookies}. (Since W is finite, every question will have fi-
nitely many answers.) How many cookies were stolen? is the partition {1 cookie was stolen,
2 cookies were stolen,...,1032 cookies were stolen}. (It’s a big jar.)

The theorem of total probability says the following. Take any proposition p. Take
any question Q = {q1, ..., qn}. The probability of p is the (weighted) average conditional
probability of p given the true answer to Q, with weights determined by those answers’
probability:

Total Probability: π(p) =
∑
qi∈Q

π(qi) · π(p|qi) = π(q1) · π(p|q1) + · · ·+ π(qn) · π(p|qn)

Total probability is useful because if we choose our question wisely, it lets us decompose
inscrutable probabilities into ones that are obvious. We’ve narrowed it down to Caspar and
Kevin. Caspar is wily—he would never steal more than one cookie (too noticeable). Kevin
is not—he needs lots of cookies to fuel that running addiction. So π(Caspar|1 cookie) = 0.5

while π(Caspar|2 cookies) = 0; meanwhile, π(Kevin|1 cookie) = 0.5 and π(Kevin|2 cookies) =
1. We’re 90% confident that 2 cookies were stolen, 10% that only 1 was. So we’re pretty con-
fident that Kevin was the culprit: π(Kevin) = π(1 cookie) ·π(Kevin|1 cookie)+π(2 cookies) ·
π(Kevin|2 cookies) = 0.1 · 0.5 + 0.9 · 1 = 0.95.

Now let πQ be the probability function that results from conditioning π on the true answer
to Q. (This is sometimes written π(·|Q)—note that it’s a partition in the conditioning spot
there, rather than a proposition.) Notice that, mathematically, πQ is not simply a probability
function (an assignment of numbers to propositions), but instead is a function from worlds
w ∈ W to probability functions πQ

w defined over W . After all, we need to update π in different
ways in different worlds: for w ∈ 1 cookie, πQ

w (·) = π(·|1 cookie), while in w′ ∈ 2 cookies,
πQ
w′(·) = π(·|2 cookies).5 So defined, it follows immediately from total-probability that π(p)

is a probability-weighted average of πQ(p). Letting πQ
q be the value πQ takes in any q-world

(for q ∈ Q):

Question-Reflection (average): π(p) = π(q1) · πQ
q1(p) + · · ·+ π(qn) · πQ

qn(p)

The probability of p equals a probability-weighted average of the conditional probability
of p given the various possible (complete) answers to Q.

5In the confusing lingo of statisticians, P is a “random” probability function; in the confusing lingo of the
philosophers of language, ‘P ’ is a definite description for a probability function, while ‘π’ is a rigid designator
for a particular probability function. (Analogy: ‘the tallest person in the room’ vs. ‘Josh’.)
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This is a simple but profound claim: your opinion should always be an average of the opin-
ions you’d have conditional on the various possible answers to some (any!) question. For
example—since for any E, {E,¬E} is a question—if E ie evidence for p (π(p|E) > π(p)),
then ¬E is evidence against it (π(p|¬E) < π(p)). (So—contrary the famous quote—absence
of evidence usually is evidence of absence.) Or: you can’t know ahead of time that the answer
to a question would cause you to raise your probability of p—for if you did, you should’ve
already raised your probability. (It can’t be that for all q ∈ Q, π(p|q) > π(p).) Or: if you’re
really confident that the answer to Q would raise your probability for p, then there must
be some chance that it’ll lower it a lot. (E.g. if π(p) = 0.5 and π(P (p) ≥ 0.6) ≥ 0.8, then
π(P (p) ≤ 0.1) ≥ 0.2, say.)

Relatedly, it follows that π defers to the opinions that would result from conditioning it
on the true answer to Q, in the sense that it’s conditionally disposed to adopt them. Where
‘δ’ is (like π) a variable over probability functions, let πQ = δ be the claim that we’re at a
world w where πQ

w = δ, i.e. {w ∈ W : πQ
w = δ}.6 Then it follows that:

Question-Reflection (global): π(·|πQ = δ) = δ

The probability of any given p, conditional on the Q-updated probability function
equalling δ, equals δ.
Question-Reflection (local): π(p|πQ(p) = t) = t

The probability of p, conditional on the Q-updated-probability of p being t, equals t.

So far this has all been synchronic, considering a particular probability function π at a
given time and how it (at that time) is disposed to revise when conditioned on various answers
to a question. In other words: all of the above are theorems of synchronic probability. But
these principles are closely related to what usually go under the heading of ‘Reflection’ or
‘Deference’ principles, and involve similar relationships between a given probability function
π and another descriptively-specified probability function P—for example, ‘the probabilities
you’ll have tomorrow’ or ‘Caspar’s probability function (today)’, or ‘the objective chances’.7

Some notational niceties are important here. I’m going to continue using lowercase Greek
letters (π, δ, ρ...) as rigid designators for particular probability functions. But we need other
ways to pick out probability functions. After all, ‘your credence function (now’) is something
that I (or even—as we’ll see—you) can be uncertain about. And if we’re to model uncertainty
about a quantity, we need to introduce a way for it to vary between worlds. Thus I’ll use
upper-case Roman letters (P, P,Q,R...) as descriptions for probability functions—formally
they are functions from worlds w to a particular probability function Pw defined over W .
When subscripted with a world, Pw, Pw, Rw′ , etc. are again rigid designators for (e.g.) ‘the
probability function P picks out at w’.

6Two probability functions δ and ρ are equal when they assign the same values to all propositions: for all
q ⊆ W , δ(q) = ρ(q).

7E.g. Lewis 1980; van Fraassen 1984; Skyrms 1980, 1990, 2006; Briggs 2009; Weisberg 2007; Christensen
2010; Elga 2013; Pettigrew and Titelbaum 2014; Salow 2018; Dorst et al. 2021.
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Now, since we should acknowledge that all the probability functions we care about
can vary from world to world, had better start using descriptions rather than rigid des-
ignators. So your probability function (now) will be picked out with P. Of course, P

picks out different functions in different worlds—in worlds where you’re sitting and read-
ing like normal, Pw = π such that π(purple elephant in front of me) ≈ 0, while a world
w′ where a purple elephant has suddenly appeared in front of you, Pw′ = π′ such that
π′(purple elephant in front of me) ≥ 0.7. This variation in your probability function needn’t
bring in any higher-oder uncertainty: in worlds w where you know exactly what your cur-
rently probability function is, that simply means that there is a π such that Pw(P = π) = 1.
Note: when P (etc.) is unembedded and no world is specified, it’ll usually use P just to pick
out the actual value of your probability function. (If the actual world is @, then P = P@.)

Given that, we can state the normal formulations of deference principles. For example,
letting sans-serif P be your current credence function and P be the one you’ll have tomorrow,
then:

Reflection (global): P(·|P = π) = π

Conditional on your future self adopting a given probability function, you adopt that
probability function.
Reflection (local): P(p|P (p) = t) = t

Conditional on your future self assigning t to p, you assign t to p.
Reflection (average): P(p) = P(P (p) = t1) · t1 + · · ·+ P(P (p) = tn) · tn
Your probability for p is a weighted average of the possible future-probabilities you
might assign to p.

Reflection is the cornerstone of Bayesian epistemology—it’s what gives Bayesianism all the
nice features you’ve heard about. In particular, it drives:

1) The “value of evidence” result that you should expect more evidence to make your
beliefs more accurate and your decisions more effective;8

2) The “no wishful thinking” (no intentionally-biased-inquiry) result that Bayesians can’t
intentionally shift their beliefs in a desired direction;9

3) The “convergence to the truth” result that given enough shared evidence, Bayesian’s
priors will “wash out” and they will come to agree on the truth;10 and

4) The “well-calibrated” result that Bayesians’ beliefs can be expected to calibrated in the
sense that of all the things they’re (say) 80%-confident in, 80% will be true.11

Nothing we’ve said so far says whether any of these Reflection principles will hold—that
depend, of course, on the relationship between your current probabilities P and (your current
probabilities’ beliefs about) your future probabilities P . How should these relate?

8Blackwell 1953; Good 1967; Ramsey 1990; Oddie 1997; Williamson 2000; Huttegger 2014, 2017.
9Kadane et al. 1996; Kamenica and Gentzkow 2011; Kamenica 2019; Salow 2018; Das 2020; Little 2022;

Dorst 2023b.
10Blackwell and Dubins 1962; Schervish and Seidenfeld 1990; Huttegger 2015; Nielsen and Stewart 2021;

Zaffora Blando 2022.
11Dawid 1982, 1983; Seidenfeld 1985; Belot 2013; Dorst 2023a.
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The standard updating rule of conditionalization says that when the total evidence you
receive between having P and having P is q, then P should be the result of conditioning P

on q:

Conditionalization: When q is the total evidence received, P (·) = P(·|q).

It’s sometimes said that conditionalization implies Reflection. That’s not right—or, at least,
not without substantive assumptions about what can be your total evidence.

Here’s an example. a, b, and c are trying to get on a train, but there’s only one ticket
left. The conductor has performed a fair lottery to determine who gets the ticket, but hasn’t
announced the winner yet. You are b, and you’d like to get evidence that you’ve gotten the
ticket. Currently, P(b) = 1

3 . But you devise a plan. You’ll ask the train conductor to tell
you one of the other two (a or c) who didn’t get the ticket. He always speaks truly. If he
tells you a didn’t get the ticket, you’ll condition on ¬a and so jump to P (b) = P(b|¬a) =
P(b&¬a)
P(¬a) = P(b)

P(b)+P(c) =
1/3

1/3+1/3 = 1
2 -confident that you’ll get the ticket. Meanwhile, if he tells

you c didn’t, you’ll condition on ¬c and so jump to P (b) = P(b|¬c) = 1
2 -confident you’ll get

the ticket. Either way, your credence that you’ll get the ticket will go up (from 1
3 to 1

2 ). So
P(b) = 1

3 but P(P (b) = 1
2 ) = 1, violating our Reflection principles. Yet you always updated

by conditioning on a truth! What went wrong?
The possible claims you might condition on don’t form a partition. To see this, notice

that there are four possibilities once we combine the question of who got the ticket and who
the conductor tells you didn’t get the ticket. Letting [a] and [c] be the propositions that he
tells you ¬a and ¬c, respectively, they are: a[c], b[c], b[a], c[a]. (Remember: he’ll never tell
you that you didn’t get the ticket.) Supposing you’re 50-50 on who he’ll tell you didn’t get
the ticket if you got the ticket (P([c]|b) = 1

2 ), your prior is the following vector over these
possibilities: P = ( 13 ,

1
6 ,

1
6 ,

1
3 ).

Suppose now we want a compact way to write what your probabilities are before (P) and
after (P ) you ask him, in each world. We can do this with (row)stochastic matrices. We’ll
order the worlds in some canonical way—say, (a[c], b[c], b[a], c[a])—and then row i column j

is the probability that you assign to world j when you’re in world i. Thus:

P =


a[c] b[c] b[a] c[a]

1/3 1/6 1/6 1/3
1/3 1/6 1/6 1/3
1/3 1/6 1/6 1/3
1/3 1/6 1/6 1/3

 P =


a[c] b[c] b[a] c[a]

1/2 1/4 1/4 0
1/2 1/4 1/4 0

0 1/4 1/4 1/2

0 1/4 1/4 1/2


Since P is the same in each row, this implies that your prior probabilities don’t vary in

any of the worlds we’re modeling. Meanwhile, the varying rows in the P -matrix indicate
P is different in different worlds. In particular, the first two rows indicate that in a[c] and
b[c]—i.e. the worlds where you’re told ¬c—you update by conditioning on ¬c (zeroing out
and renormalizing). Likewise, rows 3 and 4 indicate that when you’re told ¬a, you update
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2 BAYESIAN BASICS

by conditioning on ¬a. Notice that in all rows, P (b) = 1
4 +

1
4 = 1

2 , so your plan to raise your
credence by conditioning will indeed work.12

Notice why. The different propositions you might condition on don’t form a parti-
tion. You might condition on ¬c = {a[c], b[c], b[a]}, and you might condition on ¬a =

{b[c], b[a], c[a]}, yet these two propositions are consistent (not mutually exclusive). Thus
conditioning can lead to violations of Reflection—it does so whenever the possible proposi-
tions you might condition on don’t form a partition.

The standard Bayesian response is to insist that the possible bits of evidence you can
receive (the set of propositions you might rationally become certain of) must form a partition.
For example, in the above case they’ll point out that there’s something wrong with the above
model. The model says that in a[c], you assign 1

4 probability to b[a]—that is, you think it’s
25%-likely that b (you got the ticket) and that [a] (you were told a didn’t get the ticket).
This would be appropriate if you were unsure what you were told. But you’re not! At a[c],
you know that you were told c didn’t get the ticket. (It’s not as if you’re unsure about
what the conductor said—if you were, you wouldn’t have ruled out c.) In other words, if
the conductor tells you “c didn’t get the ticket”, you learn not only that c didn’t get the
ticket but also that the conductor told you c didn’t get the ticket, i.e. [c]. Thus, in this case,
they’ll say that conditioning on your total evidence will recover partitionality (and hence
Reflection)—in particular, if you update from P to P ′ by conditioning on the facts about
what you’ve been told, either [c] or [a]:

P ′ =


a[c] b[c] b[a] c[a]

2/3 1/3 0 0
2/3 1/3 0 0

0 0 1/3 2/3

0 0 1/3 2/3


More generally, to avoid clearly-irrational results like the one above, in practice Bayesian
modelers restrict themselves to partitional updates. Note that for any a partition Q =

{q1, ..., qn}, every world falls into exactly one partition-cell; let Qw be the partition-cell of
w. Then:

Partitional Updates: The update (P, P ) is partitional iff there is some partition Q
such that, for all worlds w, Pw(·) = P(·|Qw).

Partitionality isn’t quite enough to recover Reflection. The trouble is that we can replicate
the same sort of issue if we start with a prior that has a similar structure—namely, is not
sure of its own values. Here’s the sort of example that we’ll talk much more about later
(Williamson 2000). You’re right near the border of feeling cold. Introspecting, suppose
you know you either feel slightly cold (c), feel exactly neutral (n), or feel slightly warm

12This is a variant on the Monty Hall problem.
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(w)—but you can’t tell exactly which. Then it might be natural (we’ll come back to this)
to describe your current (prior) state with P below: if in fact you feel cold, you’re 50-50
between feeling cold and feeling neutral; if in fact you feel neutral, you are uniform over
the three possibilities, and if in fact you feel warm, you are 50-50 between feeling neutral or
warm. You know that in a moment, your thermometer will beep (if you feel warm) or bloop
(if you don’t feel warm), updating your probabilities to P by conditioning on the partition
Q = {{c, n}, {w}}:

P =


c n w

1/2 1/2 0
1/3 1/3 1/3

0 1/2 1/2

 P =


c n w

1/2 1/2 0
1/2 1/2 0

0 0 1


In this update, Reflection is once again violated. For consider Pw—your prior if in fact
you feel warm—and what it expects about your posterior. Pw(c) = 0: you’re certain that
you don’t feel cold. But you leave open both that you’re at w—where you’ll maintain your
certainty (Pw(c) = 0)—or at n—where you’ll end up 1

2 -confident of w (Pn(c) = 1
2 ). Thus

you’re on the edge of the range of future credences you think might be rational: Pw(c) = 0,
but Pw(P (c) ≥ 0) = 1 and Pw(P (c) > 0) > 0.13 It follows that your prior doesn’t equal
a (Pw-)probability-weighted average of your posterior in c—in particular, that average is
1
2 · 1

2 + 1
2 · 1

2 = 1
4 > 0 = Pw(c). Reflection is violated.14

The standard response to this problem is to require that the prior be known—that is,
like the prior in the train example, it doesn’t vary amongst possibilities that the prior
itself leaves open: if Pw(x) > 0, then Pw = Px. Equivalently, it must be clear what the
prior is—the prior obeys an introspection axiom. As we’ll see below, standard examples of
introspection axioms are on knowledge or belief—letting Bp be the proposition that you
believe that p, positive introspection on belief says that if you believe p, you believe that you
do: Bp → BBp. Negative introspection says that if you don’t believe p, you believe that
you don’t: ¬Bp → B¬Bp. (See e.g. Hintikka 1962; Stalnaker 2006.) Combined, they say
that you always have correct beliefs about whether or not you believe p.

Porting that over to probabilities, introspection says that you always have (correct) cer-
tainty about which prior you have: for all p, [P(p) = t] → [P(P(p) = t) = 1]. Equivalently:

Prior Clarity: P is clear iff, at all worlds w, if Pw = π, then Pw(P = π) = 1.
You’re certain of what your prior probability function is.

Usually Prior Clarity flies under the radar, and isn’t explicitly stated as an assumption.
Instead, it’s smuggled in using the notation. When statisticians and social scientists specify
a prior probability function, π, the intended interpretation is (almost always) as a rigid

13For discussion of such “no lose investigations” (your rational credence can’t go down, and it might go
up), see White 2006; Titelbaum 2010; Salow 2018; Fraser 2021; Dorst 2021.

14Relatedly, note that Pw(c|P (c) = 1
2
) = Pw(c|{c, n}) = 0

0+1/2
= 0, violating local Reflection.
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2 BAYESIAN BASICS

designator—meaning it doesn’t vary between possibilities as an object of uncertainty. But
as we’ll see, if we want to treat a quantity (including a probability) as an object of uncertainty,
we need to make it something that can vary between worlds—i.e. is a function from worlds
to quantities.

Combining Prior Clarity with Partitional Updates yields the set of Clear Bayes updates:

Clear Bayes: ⟨P, P ⟩ is a clear-Bayes update iff P is clear and there is a partition Q
such that, for all worlds w, Pw(·) = Pw(·|Qw).

Any Clear Bayes update satisfies all of our Reflection principles—and therefore our nice
results like convergences to the truth, etc. Clear Bayes (when generalized to infinite cases)
is the standard operating procedure in Bayesian modeling—it is the class of models used in
most every application of Bayesianism in psychology, economics, and the behavior sciences.

And for good reason! The models are flexible, tractable, and extremely useful. But, as
we’ll see, they can’t model genuine ambiguity. That’s why we’ll have to break them.

2.2 Expectations and Decisions

So far we’ve talked about how Bayesians hold and update beliefs. What about how they
make decisions? In short, they make decisions using a certain feature of their beliefs—what
they “expect” or “estimate” will be best (on average). So first, how does a Bayesian estimate
a quantity?

In addition to assigning probability-values to propositions, a probability function also
assigns expectations (estimates) to variables. (What statisticians call “random variables”,
since they can take on different values according to a given probability function.) A variable
(or quantity) X is a function from worlds w to numbers X(w) ∈ R. We can think of them as
descriptions of numbers, for example X = the number of cookies in the cookie jar or Y = the
number of pairs of socks Kevin owns. Since there are different numbers of cookies (pairs of
socks) in different possibilities, X (and Y ) take on different values at different possibilities.
Generally, a given probability function π will be uncertain about the value of a random
variable; but it can form an expectation of the variable—a probability-weighted average of
the variables possible values. Precisely, the expectation Eπ(X) of X relative to π is:

Expectations: Eπ(X) =
∑
t∈R

π(X = t) · t

For example, if you know there are either 10, 20, or 30 cookies in the jar, and you’re
1
3 -confident of each of these possibilities, then your expectation for the number of cookies is
π(X = 10) · 10 + π(X = 20) · 20 + π(X = 30) · 30 = 1

3 (10) +
1
3 (20) +

1
3 (30) = 20.

Notice that we’ve implicitly been using expectations when talking of “probability-weighted
averages”. For example, Reflection (average) can be equivalently stated as the constraint that
your prior in p equals your priors expectation of your posterior in p: P(p) = EP(P (p)).
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In general, although π will be uncertain about the value of X, if it knows what π is, it will
know what the expected value of X relative to π, Eπ(X), is—since that is determined just by
π, not by the world. Here some notational niceties are again crucial (cf. Williamson 2008).
‘Eπ’ is a rigid designator for a particular function from random variables to numbers—the
one specified above. But often we want to refer to the expectations not of a particular
probability function π, but of a descriptively specified probability function P—e.g. Kevin’s
expectations tomorrow or Caspar’s expectations today. For that, we’ll use EP—which, just as
P compares to π—is a function from worlds w to expectation-functions EPw , and therefore
can be an object of uncertainty. Precisely: EP (X) varies from world to world; for any
world w, EP (X)(w)—which I’ll write EPw

(X), since it’s variations in P which determine the
variations in EP (X)—we have EPw

(X) =
∑

t∈R Pw(X = t) · t. We’ll come back to this later.
Back to rigidly-designated expectations. Notice that a special type of random variable is

an indicator variable Xp which takes the value 1 if p is true and 0 if p is false. By definition,
Eπ(Xp) = π(Xp = 1) · 1 + π(Xp = 0) · 0 = π(p)—that is, the expectation of Xp equals the
probability that p is true. So probabilities of propositions are special cases of expectations.
That’s why it’s sometimes said that probabilities are estimates of truth-values.

As this brings out, π’s expectation of X needn’t be a value it thinks X can obtain—after
all, you know the truth-value won’t be 0.5 or 0.6. (It’ll be 0 or 1.) Rather (by the law of
large numbers), Eπ(X) is the value that π thinks a bunch of independent copies of X would
average out to. Thus if Eπ(Xp) = π(p) = 0.5, this is equivalent to saying that π is confident
that amongst a big set of independent claims q1, ..., qn—each exactly as likely as p—roughly
50% will be true. In other words: to be be 0.5-confident in p is to think “claims like this tend
to be true about half the time.” For example, let p be the claim that this (fair) die will land
1–4 when I toss it. You should be 2

3 -confident of this, so Eπ(Xp) =
2
3 . Equivalently, if I toss

it 30 times, you should be confident that it’ll land 1–4 roughly 2
3 · 30 = 20 times total.

Let’s add to probabilism the claim that your estimates that can be represented by some
probability’s expectation-function: there is a π such that for any variables X and Y , your
estimate of X is higher than your estimate of Y iff Eπ(X) > Eπ(Y ). This implies that your
estimates form a total order.

Similarly for conditional estimates. Just as we can condition a probability function π on a
proposition q to get a new probability function π(·|q), so too we can condition an expectation
function Eπ on a proposition q to get a new expectation function Eπ(·|q). The operation is
simply to condition π on q, and then take expectations relative to this updated probability
function π(·|q):

Conditional Expectations: Eπ(X|q) =
∑
t∈R

π(X = t|q) · t = Eπ(·|q)(X)

Let’s add to probabilism that your comparative conditional estimates can be represented by
some probability function—and hence form a total order.
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Expectations are (weighted) averages, so are mathematically easy to work with. Their
nicest feature is that they obey an analogue of the Total Probability theorem, which gives
convenient ways to calculate them. Take any question (partition) Q; then the expectation
of X is a probability-weighted average of it’s conditional expectations given the true answer
to Q:

Total Expectation: Eπ(X) =
∑
qi∈Q

π(qi)·Eπ(X|qi) = π(q1)Eπ(X|q1)+· · ·+π(qn)Eπ(X|qn)

Notice that this weighted average is itself an expectation. Thus—analogously to πQ—let’s
write EQ

π (X) as a description of π’s expectation of X conditional on the true answer to Q,
whatever it is. Then we can write Total Expectation equivalently as Eπ(X) = Eπ(EQ

π (X)).
This is sometimes called the “tower law” of expectations, and (misleadingly) stated as “the
expectation of the expectation equals the expectation”. Notice that, as with our differ-
ent versions of Reflection above—Total Expectation is a synchronic constraint on a rigidly
specified probability function π: it states a relationship between π’s expectations and π’s
expectations of π’s conditional expectations. As we’ll see (importantly) below, once we con-
sider probability functions P that can be uncertain of their own values, it is not a theorem
that EP (X) = EP (EP (X)): Caspar’s expectation of Caspar’s expectation of X needn’t equal
Caspar’s expectation of X. (When Caspar is uncertain what he believes, generally it won’t.)

Back to rigidly-specified expectations. Total expectation makes expectations easy to work
with, since we can always break them down into conditional expectations that we know the
values of. The simplest version of this is if we let the question Q be the finest-grained
partition of W into its singletons: Q = {{w1}, ..., {wn}}. Then, since Eπ(X|{w}) = X(w),
Total Expectation implies:

Expectations (by-world): Eπ(X) =
∑
w∈W

π(w)·X(w) = π(w1)X(w1)+· · ·+π(wn)X(wn)

This means that in our vector and matrix notation, expectations are easy to calculate.
Again order our worlds in some canonical order w1, ..., wn. Then—just like a probability
function—a random variable X can also be thought of as a vector X = (X(w1), ..., X(wn))

in which the ith entry is the value X takes at the ith world.
Let’s take our above train example, with worlds (a[c], b[c], b[a], c[a]) and a prior π =

( 13 ,
1
6 ,

1
6 ,

1
3 ). Let X be how much money you lose, and suppose that if you don’t get the ticket

you’ll have to buy another one for $100, but a is nice and c is selfish—if a gets the ticket
she’ll give you $50, whereas if c does, he’ll give you nothing. Then your change in assets in
each world is X = (−50, 0, 0,−100). Your expectation for your change in assets is a weighted
average of these values, with the weight on each determined by its probability, i.e. the
corresponding entry of π’s probability-vector. Thus Eπ(X) = π(w1)X(w1) + π(w2)X(w2) +
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· · · + π(wn)X(wn). That operation is a very well-known one in linear algebra: it’s the dot
product of our two vectors π and X, wherein we multiply corresponding entries and then
sum them up. (It’s a pain to calculate by hand, but computers do them instantly.) If we
write our vectors more compactly as π = (π1, ..., πn) and X = (X1, ..., Xn), the operation
is π ·X = π1X1 + · · · + πnXn. Applied to our example, that means Eπ(X) = ( 13 ,

1
6 ,

1
6 ,

1
3 ) ·

(−50, 0, 0,−100) = −50.
So much for estimates. What about decisions? Simple: just pick the option that you

estimate will be best. More precisely, suppose you are given a (let’s say, finite) set of options
O = {O1, ..., Om}. Each option would lead to different outcomes in different worlds. It’s
standard to assume that rational preferences are fine-grained enough to induce both a total
order on and cardinal comparisons between (how much better is x than y?) these outcomes.
Thus your preferences amongst outcomes can be represented with a utility function that
assigns outcomes to numbers, and your preferences amongst risky options can be represented
by your comparisons of expected utility.

Picking one of those utility functions, what this means is that we can simply model a
decision problem as a set of random variables: Oi is the variable the amount of utility you’d
get from option Oi, and Oi(w) is that amount at w.15

For example, suppose in our train case above I offer you insurance to guard against
the cost of a new ticket. You value money linearly, so if you don’t buy the insurance,
your utility will be X—the variable from above, with X = (−50, 0, 0,−100) across worlds
(a[c], b[c], b[a], c[a]). If you do buy the insurance, it’ll cost $40, but will cover the cost of the
ticket if you don’t get it. Thus Buying the insurance yields B = (−40,−40,−40,−40).

What should you do? According to your prior, the expected value of B is π · B = −40,
while the expected value of X is π · X = −50, so it maximizes expected value to buy the
insurance.

Now suppose I give you another option: rather than deciding now, you can first hear
what the conductor tells you (learn whether [c] or [a]), and then decide. What’s the expected
value getting the information and then deciding? That is equivalent to following a strategy
S in which you first update your beliefs on what the conductor says, and then do whatever
maximizes expected value given those posterior beliefs. What will that amount to? If the
conductor tells you ¬c (you’re in a world w ∈ [c]), you’ll condition on that and move to
Pw = ( 23 ,

1
3 , 0, 0), in which case the expected value of not getting the insurance (X) is

Pw ·X = 2
3 (−50) + 1

3 (0) ≈ −33.3, which is better than the (still) −40 value of getting the
insurance—so if you learn [c], you’ll take X. (You won’t buy the insurance, because even if
you don’t get the ticket, a will help you pay for a new one.) Meanwhile, if the conductor
tells you ¬a (you’re in a world x ∈ [a]), you’ll move to Px = (0, 0, 1

3 ,
2
3 ), in which case the

15Note that we’re implicitly doing “causal” decision (or, really, counterfactual) decision theory here (Lewis
1981; Hedden 2023). There are facts about which option you take at which world. Perhaps at w you take
O1. Still, O2(w) is well-defined—it’s the value you would’ve gotten at w if you had taken O2. We could give
a semantics for this using counterfactuals (Gibbard and Harper 1978) or imaging (Lewis 1976). But for our
purposes, we needn’t.
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expected value of not getting insurance is Px ·X = 1
3 (0) +

2
3 (−100) ≈ −66.7. That’s worse

than getting the insurance, so you’ll get the insurance.
Thus learning-and-then-deciding is equivalent the strategy S of taking X if you’re told

c didn’t get the ticket, and taking B if you’re told a didn’t get the ticket. In other worlds,

we can think of S as a new random variable which outputs Sw =

X(w) if w ∈ [c]

B(w) if w ∈ [a]
.

In other words, S = (−50, 0,−40,−40). What’s the (prior) expected value of that? It’s
P · S = 1

3 (−50) + 1
6 (0) +

1
6 (−40) + 1

3 (−40) ≈ −36.7. Notice that this is better (by about 3.3

utility) than the option of not learning-and-then-deciding, i.e. simply choosing the option
(B or X) that looks best by your prior’s lights, i.e. B = −40. As a result, you should be
willing to pay a bit over $3 to get the chance to hear what the conductor has to say before
making your decision.16

This isn’t an accident. The fact that—when learning is free—the expected value of
learning-and-then-deciding is always greater than the expected value of deciding-without-
learning is called the value of evidence (or “value of information”) theorem (Ramsey 1990;
Blackwell 1953; Good 1967), mentioned above. In this standard setting, it is closely linked
to the Reflection principle and the fact that—if you’re a precise Bayesian updating by con-
ditioning on the true answer to a question—you defer to your future self. As we’ll see,
the differing ways of adding ambiguity threaten to break the value-of-evidence theorem—to
make it the case that sometimes we should pay to avoid rationally updating on free evidence.
This result is (arguably) inevitable if we model ambiguity with imprecision, but avoidable if
instead we model it with higher-order uncertainty.

3 What Clarity Can’t Do

Clear Bayes can’t capture our five features of ambiguous judgments: irresolute assessments,
insensitivity, fuzzy boundaries, ambiguity aversion, and biased processing.

Why not? A quick theorem says that any Clear-Bayes model (and, therefore, any com-
bination of such models into a long string of updates (P 0, P 1, P 2, ..., )) will be clear in the
sense that you will be introspective: certain of exactly what your probability function is:

Bayesian Clarity: If (P, P ) is a clear-Bayes update, then for all worlds w:
Pw(P = Pw) = 1 and Pw(P = Pw) = 1.17

16Why? Expectations are “linear”, meaning the expectation of the sum equals the sum of the expectation:
Eπ(X + Y ) = Eπ(X) + Eπ(Y ). The value of paying $3 to learn is equivalent to the option S − 3, i.e.
(−53,−3,−43,−43), which has expectation equal to EP(S − 3) = EP(S) − EP(3) ≈ −36.7 − 3 = −39.7 >
−40 = EP(B).

17This is immediate for the prior by the definition of Prior Clarity. For the posterior: the fact that P
is P updated on the true cell of a partition means that if Pw(x) > 0, then w and x must be in the same
partition-cell: Qw = Qx. Since they both started out with the same prior, and they both conditioned on
the same proposition (Qw), that means they are the same. In other words, if at w your posterior leaves
open another possibility x (Pw(x) > 0), then that possibility is one where you have the exact same posterior
Px = Pw.
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This might be confusing, since many (Clear-)Bayesian models involve what’s sometimes
called hierarchical uncertainty. For example, suppose you—a clear Bayesian—are uncertain
of the bias of a coin. You know it tends to land heads either 10% or 20% or... or 90% of
the time, but you don’t know which. Let’s call that the objective chance of heads, and pick
it out with the random variable ch(h). Suppose you’re uniform over these 9 possibilities,
so P(ch(h) = 0.1) = 1

9 , P(ch(h) = 0.2) = 1
9 , etc. So you’re uncertain about a probability

function—namely, the objective chances.
Still, this is not higher-order uncertainty in the relevant sense: you are not unsure

of your own probability function. Since you’re a clear Bayesian, you know that this is
what your prior is: P(P is uniform over ch(h) = 0.1,..,0.9) = 1. Or, more cumbersomely,
P
(
[P(ch(h) = 0.1) = 0.1]&...&[P(ch(h) = 0.9) = 0.1]

)
= 1. Assuming you obey the Principal

Principle (Lewis 1980) (an analog of Reflection) your prior probability for the coin landing
heads equals your expectation of the chance of heads, which is 0.5: P(h) = EP(ch(h)) = 0.5.
Thus you know that your prior assigns 0.5 to h: P(P(h) = 0.5) = 1. Thus if you go on to
investigate the coin (say, by flipping it), we can model you with a Clear-Bayes model—and
hence you’ll satisfy Reflection and obey all the good theorems.

Likewise for expectations. Baylee the Clear-Bayesian is wondering how many socks I
have. I’m wondering too. She know that I have more information about that quantity—
call it X—than she does; but since I haven’t counted, I’m unsure as well. Letting R be
my (descriptively-specified) credence function, and P be hers, let’s say she defers to my
expectation: EP (X|ER(X) = t) = t. She’s unsure whether my estimate is 15 or 20 or 25:
P (ER(X) = 15) = P (ER(X) = 20) = P (ER(X) = 25) = 1

3 , so she’s uncertain about an
expectation. But she’s not uncertain about her expectation: since she know what P is, she
know (P assigns probability 1 to the claim) that EP (X) = 20.18

More generally, it follows from Clear-Bayes that probabilities and estimates are intro-
spective:

Introspection:
If P (q) = t, then P (P (q) = t) = 1.
If EP (X) = t, then P (EP (X) = t) = 1.

Similarly, a Clear Bayesian might be unsure what a more-rational version of themselves
would believe. Let P be your actual opinions and P̂ be your idealized-self’s opinions. Then
we can let P be uncertain about P̂ , and require that P defers to P̂ : P (q|P̂ (q) = t) = t. Thus
there’s a sense in which you can be unsure what you ought to believe—you’re non-ideal self
can be unsure what your ideal-self thinks. But—supposing both P and P̂ are Clear-Bayes—
there is no uniform reading of ‘ought’ such that “you ought to be unsure what you ought to
believe” comes out true. After all, P is certain of what P is and P̂ is certain of what P̂ is.
Rather, what we have is a mixed reading: you ought (given your limitations) to match P ,
and so be uncertain what you ought (ideally, i.e. matching P̂ ) to believe. Thus on a uniform

18Since EP (X) = P (ER(X) = 15) ·15+P (ER(X) = 20) ·20+P (ER(X) = 25) ·25 = 1
3
(15)+ 1

3
(20)+ 1

3
(25).
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reading, Clear-Bayes implies that if I’m believing as I ought, I can have no uncertainty about
whether I’m believing as I ought.

Since Clear-Bayes assumes you have precise beliefs and values and you know what your
beliefs are, it can’t do justice to our five features of ambiguous judgments. Here’s why.

First, irresoluteness. This was the fact that there was some randomness in your am-
biguous judgments. We can of course imagine a Clear-Bayesian whose estimate about my
socks is fluctuating rapidly, since they’re constantly conditioning on small bits of evidence
that are coming to mind. But fixing a given time, there should be no randomness or ar-
bitrariness in their judgment. At a given time t, they have an estimate for my number of
socks at EP (X) = 21.43; since they’re a Clear Bayesian, at t they are certain that they have
exactly that estimate. There should be no stochasticity—if you asked a thousand doxastic
duplicates of them (at t), they should all say ‘21.43’.

Second, insensitivity. This was the fact that your ambiguous comparative judgments
seem insensitive to small sweetenings. Let p be the proposition that this penny will land
heads 10 times in a row when flipped. Let q be the claim that I have at least 20 socks and
r be the claim that the die will land 1–4 on at least 20 (of the 30) tosses. Then, intuitively,
it’s (1) unclear whether you’re more confident of q than r, (2) unclear whether you’re more
confident of q ∨ p than r, but (3) clear that you’re more confident of q ∨ p than of q. Yet
if you’re a Clear Bayesian, then not only does ‘more confident than’ form a total order, but
you’re certain of what that order is. So for each of these comparisons, you should be able
to say (in fact, be willing to bet your life on!) which is true.

Third, fuzzy boundaries: when your judgments are ambiguous, it’s usually unclear
what the edges of the ambiguity are. We ran a fair lottery with 1000 people in it; let ai

be the claim that the ith person won, so P (ai) = 1
1000 . Clearly you’re more confident of

a1 ∨ a2 ∨ ... ∨ a1000 (think of this as A++++...) than you are that I have at least 20 pairs
of socks (q). Clearly you’re less confident of a1 than you are that I have at least 20 pairs
of socks. But what’s the first n such that you’re more confident of a1 ∨ a2 ∨ ...an than
of q? If you’re a Clear Bayesian, there is such a number, and you know exactly what it
is. In particular, you’ll have some credence in q—say, P (q) = 0.4702—and you’ll know as
much: P (P (q) = 0.4702) = 1. You’ll also have a precise (and known) credence in the ai:
P (a1 ∨ ...∨ a470) = 0.470, while P (a1 ∨ ...∨ a471) = 0.471. Since you’ll be certain of all these
facts, you can put them together to be certain that n = 471.

Fourth, ambiguity aversion: people tend to prefer to make bets on unambiguous
judgments than on ambiguous ones. For example, they prefer Bet1 to both Bet2 and Bet3::

Bet1: $100 if heads, $0 if tails.
Bet2: $100 if q (I have at least 20 pairs of socks), $0 if ¬q.
Bet3: $100 if ¬q , $0 if q.

There’s no way for a Clear-Bayesian to make sense of this. If P (q) = 0.5, then they should
be indifferent and know as much. If P (q) > 0.5, they should prefer Bet2 and know as much.
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3 WHAT CLARITY CAN’T DO

If P (q) < 0.5, they should prefer Bet3 and know as much.
Fifth, biases and miscalibration. I’m going to have you give probabilities for a bunch

of questions for which you have ambiguous judgments—Kevin has at least 20 pairs of socks,
Roger will be in his office tomorrow, etc. Then I’m going gather up all the ones that you
answer “0.5” on—say, I’ll do this till I have 100 of those, q1, ..., q100. Right now, before we do
this, how many of them do you think will be true? Presumably, you have little idea—maybe
around half of them, but who can say. Letting Xqi be the indicator variable for qi, the
number that are true is the variable

∑
i Xqi , i.e. Xq1 +Xq2 + · · ·+Xq100 . I’m guessing you

have some hesitancy in saying that your estimate for
∑

i Xqi is exactly 50; and I’m guessing
that you’re not terribly confident that

∑
i Xqi will be (say) between 40 and 60—it could well

be much lower or much higher. After all, you know that when you’re forming estimates with
so little to go on (or so much to sort through) you’re not great at getting things right.

Clear Bayesians can’t say this. Since they obey Reflection toward their future self, they
defer to these future 50% judgments: for all qi, P(qi|P (q1) = · · · = P (q100) = 0.5) =

0.5. Abbreviating that big condition to C, this means EP(Xqi |C) = 0.5, and hence (since
expectations are linear) that EP(

∑
i Xqi |C) =

∑
i EP(Xqi |C) =

∑100
i 0.5 = 50. Moreover,

so long as the Bayesian treats the judgments independently (being right about my socks
doesn’t shift their probability for whether Roger will be in tomorrow), then they’ll be quite
confident that X will be near 50: P (40 <

∑
i Xqi < 60) ≈ 0.94.19 That is, they expect to

be well-calibrated. Yet intuitively, in a case like this, you might expect no such thing!
So Clear Bayesians can’t capture our five features.
But wait! I’ve focused on the epistemic versions of these features—insensitivity in your

comparative-confidence judgments, etc. And I’ve been looking at Clear Bayesians, who know
exactly what their beliefs are. But nothing we’ve said seems committed to saying Clear
Bayesians know what their preferences (or utilities) are. So maybe we could still capture the
practical versions of (some of) our features, so long as we allow uncertainty about utilities.
Right?

I don’t think so. An analogous point to the response to "hierarchical" uncertainty applies
again. Suppose our Clear Bayesian is unsure whether they have utility function U1 or U2. To
represent such uncertainty, as always, we must introduce a variable that takes on different
values at different worlds. Let U be that variable—“their utility function, whatever it is”
(descriptively specified). Suppose they’re 50-50 between U1 and U2, so P (U = U1) = P (U =

U2) = 0.5. Can we capture insensitivity with these tools? I don’t think so. In short: their
expected utility is still well-defined, precise, and known. Let a be some action that can result
in different outcomes which might in turn have different utilities: U1(a) ̸= U2(a) in any

19Relative to P(·|C),
∑

i Xqi follows a binomial distribution with probability 0.5 and 100 trials.
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world. Still, by total expectation,

EP (U(a)) = P (U = U1) · EP (U(a)|U = U1) + P (U = U2) · EP (U(a)|U = U2)

= P (U = U1) · E(U1(a)|U = U1) + P (U = U2) · EP (U2(a)|U = U2)

Which will be a precise (and, by introspection on P , known!) value.
Less formally, the point is simply that if you’re unsure what your utility function is, that

is a way of being unsure what the world is like—unsure how much value a given option will
yield for you. So long as you have precise beliefs about how likely it is to be one versus
the other—and know what those beliefs are—you know exactly what your expected utility
is, which is what you need to make your decision. You might, of course, be unsure what a
more-ideal version of yourself who knew what your utilities are would do (as you will be in
this case)—but what that more-ideal version of yourself would do is not what you (given
your uncertainty) should do. (Compare: you might be unsure whether someone who knew
the bias of this coin would bet on heads or tails; but if you’re uniformly unsure whether it’s
0.1 − 0.9, then you know what you should do—namely, be indifferent between betting on
heads or tails.)20

4 Going Imprecise?

The standard solution is to introduce imprecise probabilities and utilities. Instead of a single
probability and utility function, you are best represented with a set of probability functions P
and a set of utility functions U. Think of them as a set of precifisied versions of your opinions
and preferences who disagree on how exactly to precisifiy them—your “credal committee”
and “valuation committee”, respectively. You’re more confident of p than q iff every π ∈ P
is more confident of p than q; if some are more confident and some are not, then there’s
no fact about whether you’re more confident of p than q. Similarly with utilities for your
preferences between outcomes. We should now think of decision problems O = {o1, ..., on}
as giving a set of functions from worlds to outcomes (rather than numbers), and then each
utility function U ∈ U transforms that decision problem into a set of random variables
U(o1), ..., U(on), i.e. functions from worlds to numbers. You prefer option o to option o′ iff
for every probability-utility pair (π, U) in your representors, the π-expected U -utility of o is
higher than that of o′: Eπ(U(o)) > Eπ(U(o′)).

Notice that since so far we’ve only replaced rigidly-specified probability- and utility-
functions with sets of them, the imprecise model doesn’t represent uncertainty about your
credal committee. Since P doesn’t vary from world to world, the proposition that it takes
a certain value is either true everywhere or nowhere: {w ∈ W : P = S} either equals W

(if P = S) or ∅ (if P ̸= S). That means that either our agent has no opinions at all about
20[Subtle things here about representation theorems and scaling of utility functions...]
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4 GOING IMPRECISE?

what their credal committee is (questions about it aren’t in the domain of their opinions),
or they’re certain about what it is. Since you clearly do have opinions about what their
credal committee is—you know that you’re not more confident in Kevin has at least 20 pairs
of socks than in Caspar has at least 2 pairs of socks, for instance—that means the model
represents your as certain of what your credal committee is.

Can imprecision account for our features of ambiguous judgments? Sort of.
It’s designed to account for insensitivity. Suppose your credal committee assigns es-

timates for my number of socks (X) ranging between 15 and 25, but all of them estimate
the number of times (Y ) the die lands 1–4 (of 30 rolls) at 20. Then there’s no fact about
whether you estimate X as higher than Y nor Y as higher than X, since some π ∈ P have
Eπ(X) < 20 = Eπ(Y ), and others π′ have Eπ′(X) > 20 = Eπ′(Y ). Suppose now Caspar
gives me a pair of socks, so you know my updated number of pairs of socks is X+ = X + 1.
Then you determinately estimate my updated number of socks as higher than my previous
number of socks, since for all π ∈ P, Eπ(X + 1) = Eπ(X) + 1 > Eπ(X). But again, there’s
no fact about whether you estimate the updated number of socks as higher or lower than
the number of 1–4-rolls.

It’s also not hard to squint and see how imprecision can account for irresoluteness.
Suppose you’re credal committee’s estimates for my number of socks range from 15 to 25.
Then if I force you to name a specific number, you of course will—you can “identify” with one
of your credal-committee’s estimates, at least temporarily. But there need be no deterministic
rule for how you do this: maybe sometimes when I ask you this, you’ll say ‘20’; other times,
you’ll say ‘22’, other times you’ll say ‘18’, etc.

Still, it’s not clear that the imprecise model explains all of irresoluteness. As mentioned,
it seems like in cases like this the numbers you name will be stochastic, and if we were
to repeatedly probe you for your estimate (erasing your memory between each probe, to
return you to your previous doxastic state), there’d be some fact about the distribution of
the numbers you name. In a case like this, it seems plausible that those distributions would
form a sort of bell curve centered around 20 and dropping off 15 and 25 (left):
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Of course, this is consistent with the imprecise model. But nothing built in to the model
explains why it would take that shape rather than (say) a uniform distribution between 15
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4 GOING IMPRECISE?

and 25 or even a bimodal one (right).
What about fuzzy boundaries? Here the imprecise model struggles with a problem

analogous to higher-order vagueness for supervaluationism. Since your credal committee
is a set, it has precise boundaries. Remember the fair lottery between 1000 people, with
ai the claim that the ith person won. Let q be the claim that I have at least 20 pairs of
socks. Suppose the range of your credal committee in q is P(q) = [0.353, 0.582]. As we’ve
seen above, since you know what your credal committee is, that means you know this fact:
P(P(q) = [0.353, 0.582]) = {1}. And since you know this fact, you should know where your
comparisons give out. If asked to name the smallest n such that you’re more confident of
a1 ∨ ... ∨ ...an than q, you should confidently say that n = 583.

What about ambiguity aversion? That is, people who are about 50%-confident of q
tend to prefer Bet1 to Bet2 and to Bet3:

Bet1: $100 if heads, $0 if tails.
Bet2: $100 if q (I have at least 20 pairs of socks), $0 if ¬q.
Bet3: $100 if ¬q , $0 if q.

The imprecise model can explain this if it uses the right decision rule (Ellsberg 1961). There
are variety of examples, but a simple one that will do (assuming you value money linearly, for
simplicity) is conservative: prefer a bet to a sure $x iff every member of your representor
assigns it higher expected value than $x. Since every member of your representor assigns
Eπ(Bet1) = 50, Bet1 is valued like a sure $50. Meanwhile, since P(q) spans numbers less
than 50% and greater than 50%, some of your committee members value Bet2 less than $50,
and some value Bet3 less than $50, and so you can sensibly prefer Bet1.

This result comes with a cost, though: the imprecise model can’t vindicate plausible
versions of the value of evidence. In particular, suppose P(q) = [0.3, 0.7], while you’re
exactly 50% that this fair coin will land heads: P(h) = {0.5}. Suppose you know you’re
about to do a partitional update on the partition Q = {h ↔ q,¬h ↔ q}, i.e. to either learn
(1) either both h and q, or neither, or (2) either h and not q, or not-h and q. Then (assuming
your credal committee updates by conditioning), you know beforehand that your posterior
credal committee in h will “dilate” to P′(h) = [0.3, 0.7] (White 2009).

This is puzzling for at least two reasons. First, it seems that you don’t defer to your
future self—and in particular, it’s not fully explicable why you don’t. Initially, you know
that your more-informed, rational future self will have no opinion about whether the coin
is more or less than 50%-likely to have landed heads. Yet right now you have exactly that
opinion. Presumably the point of being (epistemically) rational and gathering information is
that doing so is a good way to figure things out—to better map your beliefs onto the way the
world is. So if this really is the predictable rational response, why not defer to it? (Formally,
P(P′(h) = [0.3, 0.7]) = 1 and yet P(h) = 0.5, so we have a violation of the Reflection-like
principle which requires that P(h|P′(h) = [0.3, 0.7]) = [0.3, 0.7].)
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Second, and relatedly, this way of updating seems to be one in which you can be made
to pay not to do the update. Suppose your decision-problem is whether to take a bet
B which pays $2 if heads and costs −$1 if tails. Right now you want to take this bet:
EP(B) = 0.5(2) − 0.5(1) = 0.5, so you’d be willing to pay up to 50 cents to take the bet.
But if you follow the above ambiguity-averse decision rule, you know that once you do the
partitional update, you won’t take the bet. Therefore right now you’re willing to pay up to
50 cents to guarantee that you do take the bet—e.g. by covering your eyes so that you don’t
learn whether h ↔ q.

I believe this is fully general.21 Whenever an update will predictably “dilate” your opinion
about h, we will be able to find a decision-problem such that it’s worth your while to pay
not to do the update before making that decision.22

What about biases and miscalibration—can imprecision explain them? It’s not so
clear. It can definitely explain some of the intuitions. For example, suppose right now you
have ambiguous judgments about a bunch of qi; for each, P(qi) = [0.1, 0.9], and you treat
them all independently. Suppose what’s going to happen is you’re going to be asked to give
point-estimates for each of them, and then we’re going to gather all the ones you had a
point-estimate of 0.5 in. Say we get 100 of them. What proportion do you think will be
true? The imprecise model can allow for lots of uncertainty, as we want. In particular, since
even if you point-estimate 0.5, you still actually have the attitude [0.1, 0.9], then you have
some members of your representor who expect the number that are true to be as few as
10 (since they’re 0.1 in each), and others expect the number that are true to be as high at
90 (since they’re 0.9 in each), so you can avoid determinately having high confidence that
roughly 50 will be true.

Still, the possibility of dilation poses a variant challenge. Suppose right now you’re precise
on each of the qi, and have exactly 50%-credence in them. You’re about to get evidence that
makes your opinions ambiguous in them, so you’ll dilate (perhaps to different degrees) in
each of them. Again, we’re going to force you to make point-estimates and gather up all
the ones that you estimate at 0.5 probability. Suppose we get 100 of those. What right
now is your estimate for the number that will be true? Since you’re still precise (predictable
dilation doesn’t affect your current beliefs), just like the Clear Bayesian you must estimate
50, and you must be confident that roughly 50 will be true—even though you know you’re
going to get highly ambiguous evidence about each of them. That, intuitively, seems wrong.

This is related to a more general challenge for the imprecise model: it’s hard for it to
explain how you gain ambiguity in your judgments. You can of course do it be linking
ambiguous judgments to unambiguous ones—that’s what happened above with the coin
case. But in this case, the evidence you’re getting is itself unambiguous: it’s either h ↔ q, or

21Q: Is this right?
22It’s sometimes pointed out that, on some decision-rules, it’s compatible with them that you’ll act exactly

as your prior self wants your future self to (Bradley and Steele 2016). But it’s also compatible with them
that you don’t, so as long as you can have uncertainty about what you’ll do, it seems we can generate the
problem. I think.
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¬h ↔ q, and you always know exactly what evidence you received. Yet many of our intuitive
cases of ambiguity involve getting evidence that is itself ambiguous: the ambiguity in your
judgment stems from the vagueness of the evidence you received. For example, suppose
you start perfectly precise in all your opinions, including how tall the tree outside might
be, and how likely it is to be various heights conditional on looking various ways. Now you
glance at the tree. What exactly was the evidence you received? (How exactly did it look?)
Intuitively, you can be unsure—and as a result of being unsure, you can have ambiguity in
your posterior estimate of the height of the tree (Williamson 2000). But you can’t explain
this with a precise prior updating on a partition—if you update on a partition, you always
know exactly what you updated on.

More generally still, the imprecise model is going to need higher-order uncertainty. For
if I ask you what your representor is, the model implies that you should be able to tell me
exactly: you have certainty about it, since it doesn’t vary from world to world. But that’s
wrong: when you have ambiguous judgments, it’s hard to say exactly how far that ambiguity
extends.

Upshot: even if we like the imprecise model, we’re going to need to add a way to think
about higher-order uncertainty about your own (precise or imprecise) judgments. So let’s
see how we could do that—and, once we do, how much need there is to layer on imprecision
over and above the higher-order uncertainty that we’ll already need to add.

5 Higher-Order Uncertainty

5.1 Why go higher-order?

Why introduce higher-order uncertainty? In some sense, the answer is obvious: we have it!
We have uncertainty about what our own opinions are, so we need some way to represent
that. But you might still like a theoretical explanation for why we have this uncertainty.
After all, suppose your credences are simply your dispositions to bet—your fair prices on
unit bets ($1 if true, $0 if false) on propositions. Then why would you have any uncertainty
about your credences? Just see what it is you write down when forced to write down your
fair prices—that’s your credence. Right?

Intuitively, no. You might mess up. Almost certainty you’ll give a round number, even
if in reality your attitude isn’t exactly that round number. And most likely, if I were to
prompt you the exact same way many times when you’re in that exact same doxastic state
(say, by wiping your memory in between each; or by making a bunch of doxastic duplicates
of you), you’d write slightly different numbers each time.

That is, we have noise or stochasticity in our cognitive systems. There is no deterministic
function between what your attitude toward q is and exactly what number you’ll write down
in a given context. Psychologists have known this forever (Thurstone 1927), which is why
most contemporary ways of probing people’s degrees of confidence allows for the fact that
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there will be noise and “error” in the realization of that degree of confidence (the numbers
they write down, or the actions they take) in any given probe (Erev et al. 1994; Juslin et al.
2009; Bonawitz et al. 2014; Icard 2016; Sanborn and Chater 2016).

Here’s a simple picture: your credence in q measures your disposition to bet on q, but
that disposition can be masked with noise. Suppose if we were to probe your credence (fair
betting price) in q a bunch of independent times, what we’d find is that the distribution of
your answers is normally distributed with mean 0.7 and some variance: most of the time
you write down a number between 0.6 and 0.8, but occasionally it’s even further away:
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Then I think there’s good sense to be made to the claim that you really do have credence
0.7 in q, but that noise can mask this value. In other words: your credences are the average
of how much you’d be willing to rely on various propositions.23

Suppose this is our picture of credences. Then higher-order uncertainty is going to fall
out. After all, your credence is a hard-to-observe disposition which you can only probe
by eliciting it (seeing how much you’re willing to write down as your fair price, say). But
since such elicitations are noisy, although eliciting it provides some evidence for what your
credence is, it’s not definitive.

Suppose, for instance, you started quite unsure what your credence in q was: maybe it’s
as high as 0.9 or as low as 0.3:
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23Something like: your credence is what the objective chances would expect you to write down if probed;
P (q) = t iff probed □→ Ech(answer) = t.
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(Note that the previous graph showed the objective chances or likelihoods of you writing
down various numbers, while this graph shows your subjective distribution over what the
mean of those various objective-chance distributions are.) These various hypothesis are more
and less likely to generate different numbers when you elicit your credence. P (q) = 0.7 makes
it very likely that you’ll write a number between 0.6 an 0.8, while P (q) = 0.4 makes this
quite unlikely.

Then you go ahead and elicit your credence and find that you wrote down 0.74, This
provides evidence in favor of higher credences, but that evidence is not definitive. If you
know the distributions are all Gaussian, and you update by conditioning on what you wrote
down, your updated distribution over what your credence actually is will be higher, but still
have a fair bit of uncertainty in it:
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The point? We should expect creatures with noise in their cognitive systems to have
uncertainty about what their own dispositions are, and for that uncertainty to not be easily
resolvable—to remain upon seeing various elicitations of those dispositions, for example.
Insofar as we understand credences as dispositions to act, that means we should expect
reasonable people to have uncertainty about their own credences.

5.2 How go higher-order?

How can we model people who have higher-order uncertainty? It’s harder than you’d think.
The core reason is that once we do, the standard components of Bayesianism start to break
down. In particular, the Reflection principle rules out the possibility of higher-order uncer-
tainty. Equivalently, any model of higher-order uncertainty must violate Reflection (Elga
2013).

Why? It’s easiest to see if we look at the global version, which says that conditional
on exactly what distribution (say) your future-self has, you should adopt that distribution:
P(·|P = π) = π(·). Suppose that future-self has higher-order uncertainty: P = π, but
P (P = π) < 1, i.e. π(P = π) < 1. This is inconsistent with Reflection. For what is your prior
credence that P = π, conditional on P = π? 1, of course, by definition: P(P = π|P = π) = 1.
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But by hypothesis, π does not assign 1 to this proposition: π(P = π) < 1. Thus you don’t
match P upon learning that it’s π: P(P = π|P = π) = 1 > π(P = π). Reflection fails.

In a way, this is reminiscent of the Reflection failures of imprecise credences. But in this
case, there’s a clear explanation for why Reflection fails. Suppose you learn that P = π. If
P has higher-order uncertainty (so P (P = π) < 1), by hypothesis you’ve learned something
that P didn’t know. And if you know something that P doesn’t, you shouldn’t defer to P ’s
opinions about that thing. Yet Reflection says to defer to all of P ’s opinions. That’s why
Reflection must fail.24

Because of that, lots of standard ways for reasoning about probability will break down—
and it’ll be very easy to find our way into paradox. We need to proceed with care, so we
need to introduce a class of models for reasoning carefully about these issues.

5.2.1 Warm-up: epistemic logic

When a Bayesian is unsure what their probabilities are, how can we represent their belief-
state?

Start simpler. Consider an agent who just has binary beliefs: for every proposition q,
they either believe it (Bq), or disbelieve it (B¬q), or suspect judgment on it (¬Bq&¬B¬q).
If they are uncertain what they believe, how do we represent their belief-state?

The answer was famously given by Hintikka, Kripke, and others in the form of epistemic
and modal logic, and the “Kripke frames” that form their backbone (Hintikka 1962; Kripke
1963). The claim that you believe q is itself a proposition—it’s a way the world could be; it’s
something that I can be uncertain about. When you’re uncertain whether you believe q, you
leave open possibilities where that proposition is true, and possibilities where it’s false. So
to represent what you believe, we need each possibility in our model to determine what you
believe. In the simplest model, what you believe is determined just by the set of possibilities
you leave open: you believe q iff all of these possibilities are q-possibilities.

Precisely, let W be our background set of possibilities. What we need, then, is a function
B from worlds w to sets of possibilities Bw consistent with your beliefs in w. (Note the
similarity between B and a random variable.) Thus B is, effectively, a description of your
beliefs: “the set of possibilities you leave open, whatever they are”.

That pair (W,B) is all we need. Propositions about your beliefs are defined in terms of B:
the set of worlds where you believe q, Bq, is Bq = {w ∈ W : Bw ⊆ q}. This is a proposition
like any other, so we can do all our normal set-theoretic operations on it: the proposition
where you believe q and where r is true is just Bq ∩ r, etc. The magic of this is that it
allows us to “unravel” any higher-order belief claims into simply claims about what sets of
possibilities you rule in and rule out. For example, it follows from the above definition that

24You might think that we can just restrict Reflection to other propositions q that aren’t about P ’s opinions.
But that won’t do. If P is an expert about q, which opinions it has about q will be correlated with q, so its
lack of knowledge about its own opinions will also make it less informed about q than you are once you learn
what its opinions are. More on this below.
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the set of worlds where you believe that you don’t believe q is B¬Bq = {w : Bw ⊆ ¬Bq},
where ¬Bq = W − {w : Bw ⊆ q}.

Here’s a concrete example. Suppose you glance at the tree in the distance, and come
to form some beliefs about how it looks. What exactly those beliefs are depends on how it
looks, but you can’t fully introspect how it looks so you’re not fully opinionated about that.
In particular, let li be the claim that it looks i feet tall (to you, now). If it looks i feet tall,
then the strongest proposition you believe (the smallest set of possibilities you leave open)
is that it looks between i− 1 and i+1 feet tall. Then, letting an arrow from x to y indicate
that at x you leave open that you’re at y (i.e. y ∈ Bx), we can diagram your situation as
follows:

l20 l21 l22 l23 l24 l25 l26. . . . . .

≥ 23

B(≥ 23)

BB(≥ 23)

For example, [≥ 23] is the proposition that it looks at least 23 feet tall. You believe this
at worlds l24, l25, .... You believe that you believe this at worlds l25, l26, .... Thus at world
l24 you believe that it looks at least 23 feet tall, but you don’t believe that you believe it
since you leave open that you’re at l23, where you in turn leave open l22 and therefore don’t
believe that it looks at least 23 feet tall. (At l24, Bq&¬BBq is true.)

Generally, we can model constraints on your beliefs as constraints on the set of Kripke
frames like this that are admissible. For instance suppose we want to impose the positive
introspection constraint that if you believe q, you believe that you believe q. This means
requiring that for all q, Bq → BBq is true at every world in the frame. That, in turn, is
equivalent to saying that the “leaves open” relation is transitive: if at world x you leave open
y (y ∈ Bx) and at world y you leave open z (z ∈ By), then at world x you leave open x

(z ∈ Bx). (Note that the above frame is not transitive.)
This is how we model categorical higher-order uncertainty: lack of belief about what you

believe.

5.2.2 Probability frames

Things are exactly analogous when we turn to modeling quantitative higher-order uncer-
tainty: lack of certainty about what your degree of uncertainties are.

In the belief case, the basic object for representing your beliefs was a set Bw: you believe
q iff Bw ⊆ q. In the probabilistic case, the basic object for representing your beliefs is a
probability function π: you’re t-confident of q iff π(q) = t. So just as in the belief case we
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needed a set of worlds and a function from worlds to sets of worlds, the analogous move is
to take a set of worlds and a function from worlds to probability distributions over worlds.

Formally, a probability frame (W,P ) is a (finite) set of worlds and a function P from
worlds w to probability distributions Pw defined over the subsets of W . As before, if we
put the worlds in some order, W = {w1, ..., wn}, we can think of a probability function as a
vector π = (π1, ..., πn) where πi = π(wi) is the probability assigned to world i. As always,
logic is done via set theory: given two propositions p, q,⊆ W , p&q = p ∩ q, p → q = ¬p ∪ q,
etc.

As with epistemic logic above, the crucial step is to use the function P to define claims
about probabilities so that they are sets of worlds in the frame—and, therefore, automatically
get assigned probabilities themselves. The strategy is the obvious one: the claim that P has
some property ϕ picks out the set of worlds w where Pw has property ϕ. For example,
the claim that P assigns t-probability to q is [P (q) = t] := {w ∈ W : Pw(q) = t}. The
claim that P assigns higher credence to p than to q conditional on r is [P (p|r) > P (q|r)] :=
{w ∈ W : Pw(p|r) > Pw(q|r)}. The claim that P exactly matches the (rigidly-specified)
probability function π in all it’s verdicts is [P = π] := {w ∈ W : Pw = π}. Once we specify
W and P , all of these sets are automatically well-defined. As a result, they automatically
get assigned probabilities: the probability at w that P assigns probability t to q is simply
Pw(P (q) = t) = Pw({w : Pw(q) = t}). As a further result, that means claims about
probabilities about probabilities are also well-defined as propositions: the claim that P makes
it t-likely that P makes it s-likely that q is just the claim [P (P (q) = s) = t]; unpacking
our definitions, the inner probability claim is {w : Pw(q) = s}, so the full proposition is
{x ∈ W : Px({w ∈ W : Pw(q) = s}) = t}—which, again is just a set of worlds. Thus
every world w will assign some probability to this claim—there will be some t′ such that
Pw(P (P (q) = s) = t) = t′—and so on all the way up.

This is all terribly abstract. Let’s look at some examples. In fact, we’ve already seen
some.

First example is our model of the train case. We can represent a probability frame in
two different ways: (1) a generalized Kripke frame, or (2) a stochastic matrix. A generalized
Kripke frame looks like our above Kripke frame of the tree, except the arrows are now labeled:
an arrow labeled t from x to y indicates that the probability function at world x assigns t-
probability to world y: Px(y) = t. To avoid them getting too cluttered, it’s convenient to
have the arrows merge before being labeled and directed to their target when two worlds
agree on the relevant probabilities, and to draw no arrow when the probability is 0. For
example, here’s how we’re diagram your prior and posterior opinions in the (proper, where
you condition on what you’re told) version of the train case:
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a[c]

b[c] b[a]

c[a]

1/3

1/6 1/6

1/3

a[c]

b[c] b[a]

c[a]

2/3

1/3 1/3

2/3

We can equivalently represent this in stochastic matrices, as we’ve seen above, where row
i column j represents Pi(j):

P =


a[c] b[c] b[a] c[a]

1/3 1/6 1/6 1/3
1/3 1/6 1/6 1/3
1/3 1/6 1/6 1/3
1/3 1/6 1/6 1/3

 P =


a[c] b[c] b[a] c[a]

2/3 1/3 0 0
2/3 1/3 0 0

0 0 1/3 2/3

0 0 1/3 2/3


Both of these probabilities are higher-order certain, since whenever Pw(x) > 0, Pw = Px.
This can be seen efficiently in the Kripke frame since the worlds are grouped into sets
of worlds whose arrows merge; it can be seen efficiently in the stochastic-matrix notation
because the matrix is “block diagonal”, wherein there are blocks of nonzero values from top
left to bottom right which are all equal to each other.

Let’s work through some of the abstract reasoning in this case. [P (c) = 2
3 ] = {c[a], b[a]}.

Thus at the world where a got the ticket and you’re told ¬c, you assign 0 probability
to the claim that you assign 2

3 probability to c getting the ticket: Pa[c](P (c) = 2
3 ) =

Pa[c]({c[a], b[a]}) = 0. (You know that you’ve ruled out c!). Similarly, at the world where c

got the ticket and you’ve been told ¬a, you assign probability 1 to the claim that you assign
2
3 probability to c getting the ticket: Pc[a](P (c) = 2

3 ) = 1. (You know that you assign 2
3 to

c getting the ticket.) Meanwhile, [P = (0, 0, 1
3 ,

2
3 ) = {b[a c[a]}—the claim that you have ex-

actly the probability function (0, 0, 1
3 ,

2
3 ) is the same set of worlds as the claim that you assign

2
3 to c in this frame. Thus, again, Pa[c](P = (0, 0, 1

3 ,
2
3 )) = 0 and Pc[a](P = (0, 0, 1

3 ,
2
3 )) = 1.

Let’s do a more interesting case, involving higher-order uncertainty. For example the
Williamsonian one where you’re unsure whether you feel cold; let’s just focus on the prior:

c n w

1/2

1/2
1/3 1/3

1/3

1/2

1/2

P =


c n w

1/2 1/2 0
1/3 1/3 1/3

0 1/2 1/2


At the world where you feel cold (c), you’re 50-50 on whether you feel cold or feel neutral,

and know you’re not warm. At the world where you feel neutral, you’re uniform over the
possibilities. Therefore, at the world where you feel cold, you’re 50-50 on whether you’re
(at c, so) 50-50 between c and n, or (at n, so) uniform over c, n, and w. More precisely,
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[P = ( 13 ,
1
3 ,

1
3 )] = {n}, so [P(P = ( 13 ,

1
3 ,

1
3 )) =

1
2 ] = {c, w}, i.e. at both c and w you’re 50%-

confident that you’re uniform. Meanwhile, at n, you’re only 1
3 -confident that you’re uniform:

Pn({n}) = 1
3 .

How is it that at c you’re stably 1
2 confident that you’re at n, even though Pc ̸= Pn?

Because at c you don’t know that you’re 1
2 -confident that you’re at n; you think there’s a

half chance you’re 1
3 ! Note therefore that at c you’re only 1

2 -confident that you’re 1
2 -confident

that you’re 1
3 -confident you’re at c: [P(P(P(c) = 1

3 ) = 1
2 ) = 1

2 ] is true at c, since we can
“unravel” this higher-order claim to [P(P(n) = 1

2 ) = 1
2 ], which in turn is [P({c, w}) = 1

2 ],
which in turn is {c, w}, and so true at c.

This is fully general. In well-behaved higher-order models (ones that obey “New Reflection”—
see below), whenever you have second-order uncertainty (P is uncertain what P (q) is), you
also have third-order uncertainty (P is uncertain what P (P (q) = t) is, for various t), and so
on all the way up. This is why the uncertainty is stable: if you knew what your higher-order
distribution was, you could use it to infer what your lower-order distribution is; but you
don’t, so you can’t.

Since we’re considering an interpretation of credence as dispositions, i.e. as averages of the
degrees to which you’d be willing to act on the proposition, let’s look at a simple example of
how averaging two introspective probabilities could lead that average-probability function to
fail to be introspective. Note that the set of probability functions is closed under (weighted)
averaging: if π and δ are both probability functions then so is ρ := x · π + (1 − x) · δ, the
weighted-average between them defined so that ρ(q) = x ·π(q)+ (1−x) · δ(q). With vectors,
we do this just by averaging their components, e.g. 1

2 (
1
2 ,

1
2 , 0) +

1
2 (0,

1
2 ,

1
2 ) = (14 ,

1
2 ,

1
4 ).

Here’s a simple game. I’m going to flip a coin twice, showing the first outcome to Caspar
and the second outcome to Roger. Thus there are four possible outcomes, TT, TH, HT, HH;
those outcomes determine what each of Caspar’s and Roger’s credence over the outcomes
are. They’re good (Clear) Bayesians, so they update by becoming certain of what they saw
and being 50-50 on what the other person saw. Thus Caspar and Roger’s probability frames,
C and R, are:

C =


TT TH HT HH

1/2 1/2 0 0
1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

 R =


TT TH HT HH

1/2 0 1/2 0

0 1/2 0 1/2
1/2 0 1/2 0

0 1/2 0 1/2


Each of these probabilities are introspective. But the average of Caspar and Roger’s

opinions is not. That average is:
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A := 1
2C + 1

2R =


TT TH HT HH

1/2 1/4 1/4 0
1/4 1/2 0 1/4
1/4 0 1/2 1/4

0 1/4 1/4 1/2


This is as it should be. Since each knows that they saw but wonders what the other person
saw, they both wonder what the average of their opinions is. Since averages preserve features
that they both share, this means the average of their opinions wonders what the average
of their opinions is. For example, suppose it lands TT. Then Caspar wonders whether
Roger saw a T or a H—if the former their at TT so their average is (1/2, 1/4, 1/4, 0), if the
latter they’re at TH so it’s (1/4, 1/2, 0, 1/4). Meanwhile, Roger wonders whether Caspar saw
a T or a H; if the former they’re at TT to their average is (1/2, 1/4, 1/4, 0), if the latter
they’re at HT so their average is (1/4, 0, 1/2, 1/4). Thus the average of them (A) is itself
uncertain between these three possibilities. And since the average varies across possibilities,
the average opinion is uncertain what the average opinion is! For example, ATT (TT ) =

1
2 ,

but ATT (A(TT ) = 1
2 ) =

1
2 , while ATT (A(TT ) = 1

4 ) =
1
2 as well: if both tosses land tails,

the average is 50-50 on whether the other person saw tails (so they both leave open TT), or
the other person saw heads (so only one of them leaves open TT).

(Perhaps it’s worth considering a different case. We each form an estimate about the
number of jellybeans in a jar. We each wonder whether and how far our estimate is from the
average estimate, since we wonder what the other people estimated. Unbeknownst to us, by
a fluke we all gave the same estimate (and, let’s stipulate, have the same distribution over
what the others’ estimates might be)—thus each of our opinions equals the average opinion.
But we obviously don’t know that—the average person in the room can fail to know that
they’re the average person in the room.)

As a sanity check for the claim I made above, we can note that if we “draw samples”
from this average distribution (like forcing yourself to write down a fair price), this doesn’t
necessarily remove higher-order uncertainty. This is obvious in the jellybeans case: if (un-
beknownst to us) we all had the same estimate of 504, and then we learned that someone’s
estimate was 504, we’d each slightly increase our confidence that 504 is the average, but
continue to be quite unsure what the average is.

Similarly in the coin case. Suppose a random person is selected and that person’s credence
in TT is announced. This will be either 0.5 or 0. If it’s 0.5, both of Caspar and Roger will
condition on that. If one of them was 0.5 in TT, they’re unsure whether this random
announcement was their credence or the other person’s—so it provides some evidence that
the other person also saw tails. If their credence in TT was 0, that means they saw heads
and they now know the other person must’ve seen tails.

Letting 0 mean credence 0 is announced and 5 mean 0.5 is announced, their priors and
average over the expanded question of what the coins did and what will be announced are:
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C =



TT5 TH5 TH0 HT5 HT0 HH0

1/2 1/4 1/4 0 0 0
1/2 1/4 1/4 0 0 0
1/2 1/4 1/4 0 0 0

0 0 0 1/4 1/4 1/2

0 0 0 1/4 1/4 1/2

0 0 0 1/4 1/4 1/2



R =



TT5 TH5 TH0 HT5 HT0 HH0

1/2 0 0 1/4 1/4 0

0 1/4 1/4 0 0 1/2

0 1/4 1/4 0 0 1/2
1/2 0 0 1/4 1/4 0
1/2 0 0 1/4 1/4 0

0 1/4 1/4 0 0 1/2



A =



TT5 TH5 TH0 HT5 HT0 HH0

1/2 1/8 1/8 1/8 1/8 0
1/4 1/4 1/4 0 0 1/4
1/4 1/4 1/4 0 0 1/4
1/4 0 0 1/4 1/4 1/4
1/4 0 0 1/4 1/4 1/4

0 1/8 1/8 1/8 1/8 1/2


Updating on what’s announced yields:

C ′ =



TT5 TH5 TH0 HT5 HT0 HH0

2/3 1/3 0 0 0 0
2/3 1/3 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1/3 2/3

0 0 0 0 1/3 2/3



R′ =



TT5 TH5 TH0 HT5 HT0 HH0

2/3 0 0 1/3 0 0

0 1 0 0 0 0

0 0 1/3 0 0 2/3
2/3 0 0 1/3 0 0

0 0 0 0 1 0

0 0 1/3 0 0 2/3
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A′ = 1
2C

′ + 1
2R

′ =



TT5 TH5 TH0 HT5 HT0 HH0

2/3 1/6 0 1/6 0 0
1/3 2/3 0 0 0 0

0 0 2/3 0 0 1/3
1/3 0 0 2/3 0 0

0 0 0 0 2/3 1/3

0 0 1/6 0 1/6 2/3


Notice that the average’s higher-order uncertainty remains—for example, in TT5, it’s

2
3 -confident that TT5, but leaves open TH5, where instead it’s 1

3 -confident that TT5. (If
both Caspar and Roger saw tails, then when the announcement comes that a random one of
them is 0.5 in TT, they each increase their credence that they both saw tails, but leave open
that maybe the random person was themself, in which case the other person now knows how
both coins landed.)

5.2.3 Constraints on probability frames

We can look at the above frames to see why Reflection must fail in contexts of higher-order
uncertainty. For example, consider the average-credence cases. You’re uniform over how the
coin has landed: π = ( 14 ,

1
4 ,

1
4 ,

1
4 ). Thus your estimate for the number of heads, X, equals

Eπ(X) = ( 14 ,
1
4 ,

1
4 ,

1
4 ) · (0, 1, 1, 2) = 1. You’re not sure what the average estimate EA(X) is;

if TT, it’s ( 12 ,
1
4 ,

1
4 , 0) · (0, 1, 1, 2) = 0.5. If TH or HT, it’s 1, and if HH, it’s 1.5. What’s your

estimate conditional on the average estimate, EA(X), being 1.5? That’s true only if HH,
so you can infer that it landed heads twice: Eπ(X|EA(X) = 1.5) = 2. Thus you violate an
expectations-version of the local Reflection principle: Eπ(X|EA(X) = t) ̸= t.

Why don’t you defer to the average opinion about the number of heads? Because the
average opinion doesn’t know what the average opinion is—if EA(X) = 1.5, that’s because
both Caspar and Roger think, “Well I saw heads, but I don’t know what the other guy
saw; since I’m 50-50 that he saw heads or tails, my expectation for the number of heads
is 0.5 · 1 + 0.5 · 2 = 1.5.” Their estimates are 1.5 because they leave open that the other
person didn’t see heads—in which case the average estimate is not 1.5, but instead is 1.
Thus when you learn that the average estimate is 1.5, you learn something that this average
didn’t know, and therefore can infer more—namely, that they both saw heads.

So Reflection fails, as it must whenever probabilities are not introspective, i.e. don’t
satisfy Clear Bayes. Still a weakening of Reflection called “New Reflection” does hold (Elga
2013). Here’s the idea: if the reason you don’t completely defer to A is that A doesn’t know
what A is, then when you learn what A is, what you should defer to is what A would do, if
it were to learn what you learned. Precisely:

New Reflection: P(·|P = π) = π(·|P = π)

Conditional on P having a particular set of opinions (π), adopt the opinions that it
would adopt upon learning this fact.
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Define the informed version of P , P̂ , to be the opinions P would have if it learned what P

was: at world w, P̂w(·) = Pw(·|P = Pw). Then New Reflection is equivalent to the claim
that your beliefs equal your expectation of informed-P ’s beliefs: P(·) = EP(P̂ (·)) (Stalnaker
2019; Dorst 2019).

π obeys New Reflection toward A, due to the fact that once A learns what A is, it knows
exactly how the coin landed, due to the fact that each way the coin landed picks out a different
average opinion. For example, π(·|A = ( 12 ,

1
4 ,

1
4 , 0)) = (1, 0, 0, 0) = ATT (·|A = ( 12 ,

1
4 ,

1
4 , 0)).

Notice that although π doesn’t reflect A, it does obey a weakening of reflection. Condi-
tional on EA(X) being to some degree deviated from π’s estimate of 1, π goes in the same
direction but more so. In particular:

Eπ(X) = 1, while:
Eπ(X|EA(X) = 1.5) = 2

Eπ(X|EA(X) = 1) = 1

Eπ(X|EA(X) = 0.5) = 0

As a consequence of this, π obeys a weaker Reflection-like principle toward A’s estimate of
X: it “trusts” A’s binary judgments about whether X is high or not, for every threshold of
what counts as ‘high’; and likewise for ‘low’ judgments:

Eπ(X|EA(X) ≥ 1.5) ≥ 1.5 (= 2)
Eπ(X|EA(X) ≥ 1) ≥ 1 (= 4

3 )
Eπ(X|EA(X) ≥ 0.5) ≥ 0.5 (= 1); and

Eπ(X|EA(X) ≤ 1.5) ≤ 1.5 (= 1)
Eπ(X|EA(X) ≤ 1) ≤ 1 (= 2

3 )
Eπ(X|EA(X) ≤ 0.5) ≤ 0.5 (= 0)

This is a ‘local’ version of the Trust principle that we’ll see below yields the value of evidence
when applied generally (Dorst 2020; Dorst et al. 2021).

We’ll see other constraints we might want to impose on probability frames later on, but
we’ve seen enough to turn to what models of our ambiguous judgments might look like.

5.2.4 Ambigous features

Here you are, wondering how many socks I have. You’re also wondering how many times
the die will land 1–4 out of 30 tosses, but you know that your estimate for that should be
20. How do we model the ambiguity in your estimate about my number of socks?

The basic idea is to allow some parameter to vary which determines what your estimate
is, but to allow you to be uncertain what that parameter is. The fact that the parameter
determines your estimate means there will be precise facts about what your estimates are.
The fact that you’re unsure what the parameter is—and hence unsure what your estimate
is—will explain our features of ambiguity. Hopefully.
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Before giving a concrete model, let me show abstractly how we’ll get each feature—or
something near enough.

The basic strategy: as with the imprecise model, we now have access to a set of precise
credence functions rather than just a single one. But that set comes from that single one—
namely, it’s the set of credence functions that the single credence function leaves open. That
is, if Pw is your credence function at world w, we have both Pw (a rigidly-specified precise
credence function), but also S = {π : Pw(P = π) > 0} (the set of values of P that Pw leaves
open, i.e. those in the support of Pw). Whenever Pw has higher-order uncertainty, S will be
a non-singleton, and the range it covers will be the range of precise opinions that you leave
open that you have.

Irresolute assessments can be gotten in at least two ways.
The first is from the interpretation: if we’re interpreting your credences and estimates as

averages of the numbers you’d write down if forced, then whenever there’s any variance in the
distribution of numbers you write down, there’ll be some stochasticity and felt arbitrariness
in your judgment.

The second is directly from the introspection failures. Suppose EP (X) = 20, but
P (EP (X) = 20) is low, and (say) in fact P (EP (X) = 21) = 0.2 and P (EP (X) = 19) = 0.2.
This may lead to you sometimes mis-stating your estimate—perhaps in a way that’s pro-
portional to how likely you think your estimate is that particular mis-statement—e.g. 20%
of the times you’re probed, you’ll say that your estimate is 21. (This is sometimes called
probability-matching in reporting: being disposed to give an answer q in proportion to how
likely you think q is the right answer.)25

Insensitivity can’t strictly-speaking be recovered, since your probabilities and estimates
are precise, so if P (q) = P (r), then P (q ∨ a) > P (r). (Where a is the proposition that the
penny will land heads 10 times in a row.) But the higher-order model captures much of the
intuitive judgment by saying you can be massively unsure about these facts. Recall that the
imprecise model says “you confidence in q is on a par with your confidence in r, and your
confident in r is on a par with your confidence in q∨a, but your confidence in q∨a is greater
than your confidence in q”. As a substitute, the higher-order model says: “You’re unsure
whether you’re more confident of q or of r, and you’re unsure whether you’re more confident
of q ∨ a or of r, but you’re certain that you’re more confident of q ∨ a than of q.

An advantage of this is that it automatically encodes the apparent gradability of how
“incomparable” propositions are (Hájek and Rabinowicz 2022). Suppose Caspar’s trying to
cheer me up from my latest racing debacle by giving me pairs of running socks. At t0 you
know I own X socks, and you have some ambiguous estimate for what X is—say, 20. Every
minute, Caspar gives me another pair of socks, so you know that at t1 I have X + 1 pairs,
and t2 I have X + 2 pairs, and so on. By hypothesis, it’s unclear whether your estimate

25[note to self: averages of informed credences? Maybe is P (P̂ = π) = t, you answer Eπ(X) with
probability t. Or rather, if P (E

P̂
(X) = s) = t, then there’s probability t that you’ll answer s to the estimate

of X.]
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for my original (X) number of pairs of socks is greater or less than your estimate for the
number of 1–4 rolls of the die (20). By the time Caspar has given me 15 pairs of socks, it’s
clear that your estimate for X + 15 is higher than 20. And if we observe you struggling to
make comparisons, presumably what we’ll find is that at t0, t1, and t2 you’re very torn. By
the times t3 and t4 roll around, you’re starting to lean more reliably toward thinking that
EP (X + 4) > 20. And so on.

This is automatic on the higher-order uncertainty picture. Supposing you start out with
the below blue higher-order distribution for what your estimate of X is, it follows that your
distribution for my number of socks at later times is progressively shifted to the right:

X

X+1

X+2

X+3

X+4

10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

Estimate

P
(E
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e
=
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So although you’re initially 50-50 between whether you have a higher estimate for my number
of socks than your estimate for the number of 1–4 rolls, i.e. 20 (P (EP (X) > 20) = 0.5),
by the time Caspar gives me 4 pairs of socks you’re 95%-confident that you have a higher
estimate for the number of pairs of socks I now have: P (EP (X + 4) > 20) ≈ 0.95.

Fuzzy boundaries. Relatedly, the higher-order model is better-equipped to explain the
fact that the ambiguities in your assessments have fuzzy boundaries. Recall that the problem
was that since your credal committee has sharp boundaries, there are precise points where
the imprecision gives out. Thus if your estimate for my number of socks is determinately
higher than 15 and lower than 25 (i.e. EP(X) = [15, 25]), then there’s a first time when you
determinately have a higher estimate for my number of socks than for the number of 1–4
rolls, namely t6. Equivalently: at the original time there’s a clear greatest lower bound on
your estimate of my number of socks—namely 15. The imprecise model can try to avoid this
by somehow introducing higher-order indeterminacy or imprecision, but the relevant point
of contrast is that the higher-order model gets this for free.

Suppose P (15 ≤ EP (X) ≤ 25) = 1, i.e. you’re sure that your estimate is between 15
and 25. Let’s further suppose that this is the strongest thing about EP (X) you’re sure of—
there’s no narrower interval [l, h] ⊆ [15, 25] such that you’re sure l ≤ EP (X) ≤ h. Let’s write
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5 HIGHER-ORDER UNCERTAINTY

that fact supP (EP (X)) = [15, 25], for P ’s support (the range of possibilities it leaves open).26

It follows that there’s a greatest lower bound on what you think your estimate might be—
namely, 15. But it doesn’t follow that this greatest lower bound is clear. Indeed, as we’ve
seen, when you have second-order uncertainty (P is unsure what EP (X)) is, this is always
accompanied by third -order uncertainty (P is unsure what P (EP (X) = t) is, for various
t). As a result, most sensible models of your uncertainty will say that when the strongest
thing P is certain of is that EP (X) is between 15 and 25, you’re not certain of this fact.
For example, a Williamsonian margin-for-error principle would say that at worlds w where
EP (X) = 15, you’re not sure that EP (X) isn’t a bit lower: Pw(EP (X) < 15) > 0. Thus
even if the greatest lower bound on your estimate is 15, you leave open that your estimate
is 15, in which case the greatest lower bound on your estimate is at least a bit lower: when
supP (EP (X)) = [15, 25], P (supP (EP (X)) = [15, 25]) < 1.27 That means the boundaries of your
ambiguity are themselves ambiguous: it’s unclear whether the greatest point n that your
estimate for X is higher than is 15, or 14, or 16.

Ambiguity Aversion. This one’s subtle. There are definitely forms of ambiguity aver-
sion that fall our easily from the higher-order uncertainty approach. For instance, sometimes
gaining ambiguity can lead you to become predictably less accurate in your estimates, so
you of course would like to avoid forming or relying on such ambiguous estimates (Ahmed
and Salow 2018). For example, ambiguity can lead to updates that look like our first model
of the train case, where you know the update is going to raise your credence in q—so you’d
prefer not to rely on your posterior after the update.

How (or if) this can be extended to the specific version of ambiguity aversion given by
our bets is something I’m still thinking through. Recall that, empirically, where q is the
claim that I have at least 20 socks, people often prefer Bet1 to both Bet2 and Bet3:

Bet1: $100 if heads, $0 if tails.
Bet2: $100 if q, $0 if ¬q.
Bet3: $100 if ¬q , $0 if q.

On the simple theory that, given higher-order uncertainty, you should maximize expected
utility given your credences (even if you’re unsure what they are), it follows that either
you’re indifferent between all three (because P (q) = P (¬q), or you prefer one to the other:
if P (q) > 0.5, then EP (Bet1) is highest; if P (q) < 0.5, EP (Bet2) is highest.

What else could we say? The analog of the conservative decision rule from imprecise
probability that yields ambiguity aversion, ported over to higher-order uncertainty, says that

26supP (EP (X)) = [l, h] is the proposition {w ∈ W : Pw(l ≤ EP (X) ≤ h) = 1 and Pw(l < EP (X)) <
1 and Pw(EP (X) < h) < 1}.

27The margin-for-error argument implies that the “x leaves open y” relation (Px(y) > 0) is non-transitive,
which in turn implies failures of the value of evidence (Dorst 2020). But the same point can be made without
transitivity failures: even if P (15 ≤ EP (X) ≤ 25) = 1 implies that P (P (15 ≤ EP (X) ≤ 25) = 1) = 1 (if
you’re sure EP (X) is between some values, then you’re sure that you’re sure of it), you still needn’t know
exactly what possibilities you leave open—transitive but non-Euclidean probability frames will be such that
you’re unsure whether you’re sure of something stronger, and hence that the greatest lower-bound is not 15
after all.
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5 HIGHER-ORDER UNCERTAINTY

if you leave open that the expected value of X is as low as t, then you shouldn’t value it
at more than a sure t. That would imply that you should prefer Bet1, since you know it’s
expected value is 0.5, while you leave open that the expected value of each of Bet2 and Bet3
is lower than that.

An alternative strategy is to think of the choice really as between an unambiguous es-
timate (Bet1), and doing one of the ambiguous ones (Bet2 or Bet3)—who knows which.
Suppose you know that you’ll maximize expected value if you do the latter—but you’re
not sure which one maximizes expected value, since you don’t know what your credences
are. Then if you don’t trust your own credences—if P (q|P (q) > 0.5) < 0.5, as can hap-
pen given higher-order uncertainty (Dorst 2020, §6)—then you’ll prefer to take Bet1 than
to risk choosing incorrectly between Bet2 and Bet3. This allows that people who do trust
their judgments might prefer the ambiguous options, which fits with the generalization of
ambiguity-aversion known as “home bias” (Trautmann and van de Kuilen 2015): people who
aren’t familiar with reasoning in a certain domain tend to be ambiguity averse, while those
who are familiar tend to be ambiguity seeking (preferring to bet on claims like Bet2 or Bet3
when they have some expertise about q-like propositions).

There are other strategies, too.28 What should I say here?
Biases and miscalibration are easier, due to the fact that Reflection fails whenever you

have higher-order uncertainty. Here you are, with your credences P . You’re unsure what your
own opinions about q are (let alone what you’re going to write down if forced to name your
betting price), so P (P (q) = t) < 1 for all t. Conditional on you being 50%-confident in q, how
likely is it that q is true? Since Reflection fails, we are not obligated to say 50%: it’s possible
(in fact common) that P (q|P (q) = 0.5) ̸= 0.5. For example, take the average-credence-
function A from above. If the coin lands TT, then A(TT ) = 0.5 and A(TH ∨ HT ) = 0.5.
But A doesn’t know that it has these values: A is 50-50 over whether A(TT ) = 0.5 or instead
A(TT ) = 0.25. As a result, conditional on A assigning 0.5 to these propositions, A acts very
differently. ATT (TT |A(TT ) = 0.5) = 1, while ATT (TH ∨HT |A(TH ∨HT ) = 0.5) = 0.

More generally, if you have higher-order uncertainty, you might assign 0.5 to q only
because you don’t know that you assign 0.5 to q—and learning that you do could send your
credence up or down. So suppose we gather up 100 independent qi, each of which you assign
0.5 to. Is your expectation of the number that are true necessarily 50? No! Suppose that
for each qi, P (qi|P (qi) = 0.5) = 0.6—then your expectation for the number that are true
will be 60! More generally, learning that you assign 0.5 to each could scatter your credences
in each in all sorts of different directions. As a result, even if they’re all independent, you
can be quite doubtful that the proportion of them that are true will be anything close to
50%—you can expect to be miscalibrated.

You can even expect to be more blatantly biased. For example, you might currently be
28Something about cognitive processing. You know that further reflection/thinking would change your

estimate about the value of Bet2 and Bet3; if you act on them, then you feel more pressure to do that
cognitive effort...?
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5 HIGHER-ORDER UNCERTAINTY

50%-confident of q, be certain that your probability won’t drop, and leave open that it might
go up (Dorst 2021). (This is what’s known as a “no-lose investigation”.) Here’s a toy case:

P =

 q ¬q
0.5 0.5

0.5 0.5

 P =

 q ¬q
1 0

0.5 0.5


Here you start out 50%-confident of q, are sure that you’re credence won’t drop, and leave
open that it might go up (to 1). Notably, it’ll do this only if q is true—so you know that
your (biased) posterior will either be equally accurate or more accurate than your prior.

5.2.5 Models

Enough hand-waving; let’s start drawing some models.
Let’s give a toy model of you estimating the number of socks I own. For simplicity, let’s

deal with a case where in fact you’re sure your estimate is between 19 and 21. Suppose you
have an internal “signal”—an amalgamation of the little bits of evidence you have about the
question—which fixes your best guess about the number of pairs of socks I have. Conditional
on your best guess being n, you’re sure that the number I have is n± 3. But you’re unsure
what your best guess is: if in fact it’s n, you leave open that it’s n+ 1 or n− 1.

We can diagram this using the following structure. Here we slightly modify our Markov
diagrams as follows. We partition the worlds into what your posterior P is, which is de-
termined by your best guess (arrayed along the x-axis). Within each partition-cell qi, blue
numbers represent the conditional probability of each world w within that cell, P (w|qi).
For instance, conditional on your best guess being 18, you have 0.05 credence that the true
value is 15, 0.1 that it’s 16, etc. The unconditional probabilities of each cell is then given
by the labeled arrows between cells: if your best guess is 18, you’re 0.4-confident that it is,
and 0.3 confident that it’s 19, etc. Unconditional probabilities for worlds are then gotten
by multiplying through the probability of a cell times the conditional probability of a world
given that you’re in the cell—for instance, if you’re best guess is 20 (you’re in the middle
column), the unconditional probability that your best guess is 20 and the true value is 17 is
0.4 · 0.05 = 0.02; the unconditional probability that your best guess is 19 and the true value
is 18 is 0.3 ∗ 0.2 = 0.06, and so on.

(This representation of our model is possible because, in models that obey New Reflection,
all worlds agree on these conditional probabilities; see Dorst 2019. Thus for all worlds w,
Pw(·) = EPw(P̂ (·)), as mentioned—notice that P̂ at a given world is given by the blue
numbers inside that world’s partition-cell.)

41



5 HIGHER-ORDER UNCERTAINTY
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Best guess

15 .05

16 0.1

17 0.2

18 0.3

19 0.2

20 0.1

21 .05

18

16 .05

17 0.1

18 0.2

19 0.3

20 0.2

21 0.1

22 .05

19

17 .05

18 0.1

19 0.2

20 0.3

21 0.2

22 0.1

23 .05

20

18 .05

19 0.1

20 0.2

21 0.3

22 0.2

23 0.1

24 .05

21

19 .05

20 0.1

21 0.2

22 0.3

23 0.2

24 0.1

25 .05

22

0.3
0.4 0.3

0.3

0.4 0.3

0.3

0.4 0.3

0.3

0.4 0.3

0.3

0.4
0.3

· · ·

· · ·

What does this model imply? Suppose your best guess is 20, so you’re in a world w

in the middle column. Let bi be the proposition that your best guess is i. Notice that
Ew(X|b19) = (0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05)·(16, 17, 18, 19, 20, 21, 22) = 19, and similarly for
all bi on which it’s well-defined, Ew(X|bi) = i. Thus by total expectation the unconditional
expectation at each bi is also equal to i, due the symmetry of the uncertainty. For example,
for w ∈ b20:

Ew(X) = P (b19) · Ew(X|b19) + P (b20) · Ew(X|b20) + P (b21) · Ew(X|b21)

= 0.3 · 19 + 0.4 · 20 + 0.3 · 21

= 20

How does this model do with our features?
Irresolute assessments: we haven’t explicitly modeled noise here, though perhaps

there’s some way to. But we might think it comes directly from the higher-order uncer-
tainty: when your estimate is 20, you’re 60%-confident that it’s either 19 or 21; so it’s
reasonable to think maybe you’d sometimes state 20, and other times state 19 or 21 as your
estimates. (Perhaps when your best guess is in fact 20, you’re 40%-likely to name 20 as
your estimate, 30%-likely to name 19, and 30%-likely to name 21—the chances of you saying
various estimates matches your probability of having those estimates.)

Insensitivity. You know that your estimate for the number of times the die rolls 1–4
is 20. Thus when your estimate for my number of socks is 19, that estimate is less than
your estimate for the numbers of 1–4 rolls, but you’re only 70%-confident that it’s less (since

42



5 HIGHER-ORDER UNCERTAINTY

P (EP (X) = 20) = 0.3). Then when Caspar gives me one more pair of socks, you’re now
30%-confident that your estimate for my new number of socks is less than your estimate for
the number of 1–4-rolls. Note that if we make the degree of sweetening smaller relative to to
the band of your uncertainty in your estimate, we can make cases where the degree to which
you’re uncertain before- and after- the sweetening is roughly the same. (E.g. both before
and after the sweetening, you’re still roughly 50-50 on which estimate is higher.)

Fuzzy boundaries. Suppose your estimate is 20. In this model, the strongest thing
your sure about your estimate is that it’s between 19 and 21. But you don’t know the answer
to the question, “What’s the greatest lower bound on your estimate for Kevin’s number of
socks?”. In fact, the answer to this is 19. But you’re 30%-confident that your estimate is 19,
in which case the answer to this question is 18. And you’re 30%-confident that your estimate
is 21, in which case the answer is 20. So although the true answer to the question is 19,
you’re 30%-confident that it’s 18, 40% that it’s 19, and 30% that it’s 20. The same is true
at all possibilities: you’re always unsure what the greatest lower-bound on your estimate is,
i.e. what the greatest number is that you’re estimate is definitely higher than.

Ambiguity Aversion. Letting q = Kevin has more than 20 socks, suppose your estim-
ate is 20 and you’re offered the following three bets:

Bet1: $100 if heads, $0 if tails.
Bet2: $100 if q, $0 if ¬q.
Bet3: $100 if ¬q , $0 if q.

Your confidence in q is 0.3(0.1+0.05)+0.4(0.2+0.1+0.05)+0.3(0.3+0.2+0.1+0.05) = 0.38,
so your confidence in ¬q equals 0.62. Thus your expectation for Bet3 is $62, higher than that
for Bet1 (=$50). Still you’re 30%-confident that you’re at b21, in which case your confidence
in q is P (q) = 0.62, so P (¬q) = 0.38 and your estimate for the value of Bet3 is only $38.
Thus when you think about taking Bet3, you worry that your expected value is lower than
50—an expected-value that you know you can achieve, by taking Bet1. Perhaps that can
help explain ambiguity aversion. (...?)

Biases and miscalibration. Since Reflection fails in this model, you won’t be perfectly
calibrated. For example, notice that the highest credence you ever assign to a proposition
of the form [X = n] (e.g. Kevin has exactly 20 socks) is 0.24—e.g. at b20, P (X = 20) =

0.3(0.2) + 0.4(0.3) + 0.3(0.2) = 0.24; everywhere also you assign lower credence to it. But
in these worlds where you assign that credence, it’s 30%-likely that X = 20 (since P (X =

20|b20) = 0.3). Thus if we were to repeat this structure independently a bunch of times
(with many different estimates), of all the times you were 24%-confident of a claim of the
form X = n, it would be true 30% of the time. More generally, here’s your calibration curve
for specific propositions about the value of X, i.e. of the form X = n:
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calibration curve for X=n propositions

perfect calibration

0.05 0.10 0.15 0.20 0.25

0.05

0.10

0.15

0.20

0.25

0.30

Note that it doesn’t match the diagonal line: of all the things you’re t-confident in, the
expected proportion that are true is sometimes less and sometimes more than t.

There are a variety of issues with model that might move us to revise it. One of the most
salient is that it leads to rather dramatic failures of the value of evidence. Let odd be the claim
that the number of socks you’ll estimate me to have will be odd, i.e. [E(X) ∈ {1, 3, 5, ..., }].
Then you’re anti-reliable about odd : in worlds where it’s true, you assign 40% credence to it,
and in worlds where it’s false, you assign 60% credence to it. Thus, for instance, if you were
initially 50-50 on whether your estimate would be odd (before thinking about my socks),
and you had to decide on a bet about your estimate, you’d pay money not to think about
the evidence and form posteriors in this way. (You’d know your prior of 50-50 on odd will
be more accurate than your posterior.)

This is reminiscent of failures of Reflection and the value of evidence with imprecise
credences. However, while (I believe) all imprecise decision theories (that don’t mimic precise
ones) lead to some form of a failure of the value of evidence, there are higher-order-uncertain
updates that satisfy the value of evidence.

Even the above one satisfies it partially: for binary questions of the form is your estimate
above or below n?, the update from the uniform prior will make your beliefs more accurate.
Likewise for questions of the form is Kevin’s number of socks at least n?

But more than that: some updates satisfy the value of evidence for all questions we could
ask. That is, for every decision problem, the prior’s expectation for the value the strategy
of first doing the update and then maximizing expected value is always greater than it’s
expectation for ignoring the update. We’ve seen an example of such an update at the end of
§5.2.4, where the prior was going to do a biased update but one that is guaranteed to only
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ever improve accuracy.
Generally, the value of evidence is satisfied when the prior obeys the following weakening

of Reflection toward the posterior (Dorst et al. 2021):

Trusts: For all X, t: EP(X|EP (X) ≥ t) ≥ t

Conditional on P having having a high estimate for t, have a high estimate for it.

The value of evidence will be partially satisfied if this holds for restricted classes of Xs. In
particular, if every option X in the decision-problem satisfies this constraint, then [we know]
the prior will expect the posterior to be more accurate about the values of each option on
every proper accuracy scoring-rule, and [we think] the prior will expect the posterior to make
a better decision.

6 Conclusion

Oof. What a journey.
I’ve made a preliminary, messy case for the claim that higher-order uncertainty is a better

way of understanding ambiguous cases than imprecision is. Please help me figure out what’s
helpful and plausible, and what’s not. Thanks!
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