Dorst 2023, Overconfidence

Kevin Dorst
24.223 Rationality

I. Calibration tests

Do people tend to be overconfident-i.e. more confident than it's rational to be, given their evidence?

Calibration studies. 2AFC tests.
If we observe $\bar{T} \ll \bar{C}$, when is that evidence that $\bar{R} \ll \bar{C}$?
\rightarrow Only if we have reason to think $\bar{T} \approx \bar{R}$.
Bayesians expect themselves to be calibrated.
But we are not them; often don't expect rational people to be calibrated:

1. Rajat the BIV
2. Georgie the geographer
3. When is my mother's birthday?
4. Flukey coins
5. Double-sided coins
6. Set of answers you're wrong/right about.

II. Deference and Independence

Calvin does a calibration test. What to make of it? Focus on 80% opinions.

Analogy: Magic Mary and bias-busting Bianca.
If Bianca is calibrated, we get good evidence that she can decipher the coins' biases; if poorly calibrated, we get good evidence she can't. Why?

Principal Principle: defer to the biases of the coins, and the bias screens

Note: this is a question about the relationship between an empirical quantity (\bar{C}) a normative one (\bar{R}).
vs. interval-estimation

When should we?
Short answer: when we defer to \bar{R}

In what sense are these cases abnormal, i.e. do rational opinions tend to be right?
off the outcomes from each other ("Independence").
Analogy:
Bias of coin \rightsquigarrow rational credence for Calvin to have.
Heads or tails \rightsquigarrow opinion true or false
Align credence with bias \rightsquigarrow align credence with rational credence
Defer to biases \rightsquigarrow defer to rational credences
So we need:

Deference: Upon learning that the average rational confidence for Calvin to have in his 80%-opinions is $x \%$, you should be $x \%$ confident in each of them. $\quad P\left(g_{i} \mid \bar{R}=x\right)=x$. Independence: Given that the average rational confidence for Calvin to have in his 80%-opinions is $x \%$, learning that certain of these opinions are true or false shouldn't affect your opinion in the others. $P\left(g_{i_{0}} \mid \bar{R}=x, g_{i_{1}}, \ldots, g_{i l} \neg \neg g_{i_{1+1}}, \ldots, \neg g_{i_{k}}\right)=P\left(g_{i_{0}} \mid \bar{R}=x\right)$.

Together, guarantee that conditional on $\bar{R}=x$, your distribution for the number of g_{i} that are true is binomial with parameters x, n.

Note: if Independence false, Deference still sets expectation of \bar{T} to x but not necessarily confident it's close.

III. The limits.

This inference is fragile: hard to avoid evidence that breaks Deference or Independence. E.g. hit rate.

Claim (1): hit rates don't provide direct evidence about rationality.
Claim (2): hit rates distort deference.
So eg $P\left(g_{i} \mid \bar{R}=x\right.$, hit-rate is low $)=x-0.1$.
Then expect if rational, 70% of 80%-opinions will be true.
What to conclude?
Empirical generalization is hard-easy effect. Evidence for irrationality?
No-to be expected even if people are rational. Consider Bianca: amongst sets of tablets where her hit rate is low, expect over-calibration. Vice versa if high.

For all g_{i}, x.
Fails with Rajat, Georgie, Fluke, \& \mathcal{W}.

For all $g_{i_{0}}, \ldots, g_{i_{k}}, x$.
Fails with misprinted coins.
\Rightarrow conditional on $\bar{R}=x$, you're confident $\bar{T} \approx x$. Thus confident that $\bar{R} \approx \bar{T}$. Inference goes through.

Sketchy argument for this using monotonicity.
Like learning it's a tricky test.
\Rightarrow miscalibration evidence for rationality.

