The Gambler's Fallacy

Kevin Dorst
24.223 Rationality

I. The Gambler's fallacy

The gambler's fallacy (aka the "law of small numbers") is the tendency to think that short sequences of random events will have tend to have similar statistical properties to long sequences.

Example: A koin is a bit of code on a computer that, when 'flipped', can land either 'heads' or 'tails'. You know that on long sequences, koins tend to land heads around 50% of the time.

The gambler's fallacy: thinking that sequences like TTTH are more likely than those like TTTT.
\rightarrow As a result, if you see it land TTT, you think H is more likely than T on the next toss.

Why think it's a fallacy?

- A fair koin-one whose tosses are statistically independent-will tend to land 50% heads on long sequences.
- So if all you know is that koins tend to land heads on 50% of long sequences, you have no reason to think it's not fair.
- Therefore, upon seeing it land T, you should not expect it to be more likely to land H than T on the next toss.

Claim: This reasoning is mistaken-the GF is not a fallacy.
On natural precisifications of the claim "it tends to land heads 50% of the time", knowing this does give you reason to expect that short sequences will share this property, i.e. that if it lands T , it's more likely to land H on the next toss.

II. A simple case

Suppose you know that the koin is either Steady, Switchy, or Sticky:
Steady: If it just landed heads (tails), it's 50% likely to land heads (tails) on the next toss.
Switchy: If it just landed heads (tails), it's 40% likely to land heads (tails) on the next toss.
Sticky: If it just landed heads (tails), it's 60% likely to land heads (tails) on the next toss.
All three hypotheses will lead to $\approx 50 \%$ heads on long sequences.
Suppose you know it just landed tails (you don't know what it landed before that). Let cr be your credence function.

What's your credence it'll land heads next? By total probability:

$$
\begin{aligned}
c r(H) & =c r(\text { Switchy }) \cdot \operatorname{cr}(H \mid \text { Switchy })+c r(\text { Steady }) \cdot c r(H \mid \text { Steady })+c r(\text { Sticky }) \cdot c r(H \mid \text { Sticky }) \\
& =\operatorname{cr}(\text { Switchy }) \cdot 0.6+c r(\text { Steady }) \cdot 0.5+c r(\text { Sticky }) \cdot 0.4
\end{aligned}
$$

Notice that $c r(H)>0.5$ iff $c r($ Switchy $)>c r($ Sticky $)$.
\rightarrow You should commit the GF iff $c r$ (Switchy) $>c r$ (Sticky)!
Q: Is it reasonable to have cr (Switchy) $>\operatorname{cr}$ (Sticky)?
Yes! Switchy makes what you know about koins-they usually land heads around 50% of the time (E)—more likely than Sticky.
\rightarrow So E confirms Switchy.
Why? Let $c r_{0}$ be your prior and $c r(\cdot)=c r_{0}(\cdot \mid E)$.
Assume $c r_{0}$ is $\frac{1}{3}$ in each of Switchy, Sticky and Steady.

Small case:

- Let $E=$ it landed heads 50% of the time on 2 tosses. This is equivalent to $T H \vee H T$, i.e. "it landed one way then switched".
- Thus $c r_{0}(E \mid$ Switchy $)=0.6$, while $c r_{0}(E \mid$ Sticky $)=0.4$.
- Meanwhile, $c r_{0}(E)=0.5$.
$\Rightarrow c r_{0}(E \mid$ Switchy $)=0.6>0.5=c r_{0}(E)$.
\Rightarrow Since relevance is symmetric, $c r_{0}($ Switchy $\mid E)>c r_{0}($ Switchy $)$!
- So $\operatorname{cr}(H)=0.4 \cdot 0.6+0.33 \cdot 0.5+0.27 \cdot 0.4 \approx 0.513$.

Since this is greater than 0.5 , that's the gambler's fallacy!

General case:

In general, for any number of tosses $n, E=$ The coin landed heads around 50% of the time in n tosses will be made more likely by Switchy than by Sticky, and therefore will be confirm Switchy.
E.g. the likelihoods of various numbers of heads on 100 tosses:

Meanwhile, $c r_{0}(E \mid$ Steady $)=0.5$.
Why?
$c r_{0}($ Switchy $\mid E)=\frac{c r_{0}(\text { Switchy }) c r_{0}(E \mid \text { Switchy })}{c r_{0}(E)}$
$=\frac{1 / 3 \cdot 0.6}{0.5}=0.4$. Meanwhile,
$c r_{0}($ Steady $\mid E)=\frac{1}{3} \approx 0.33$ and $c r_{0}($ Sticky $\mid E)=\frac{4}{15} \approx 0.27$.

Since the bell curve is tighter on the Switchy hypothesis, that means $c r_{0}(E \mid$ Switchy $)>c r_{0}(E \mid$ Sticky $)$. So the reasoning generalizes.

